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Abstract

Carry-skip adders compare favorably with other adders for
efficient VLSI implementation. Lehman has shown that
carry-skip adders with variable-size blocks are faster than
adders with constant size blocks. In 1967, Majerski sug-
gested that multi-level implementation of the variable-size
carry-skip adders would provide further improvement in
speed. Almost two decades later, Oklobdzija and Barnes
developed algorithms for determining the optimal block
sizes for one-level and two-level implementations, and a
generalization of their results was given by Guyot et al. In
these analyses, all adder cells are implemented with static
(restoring) logic. Therefore the ripple-carry propagation
delay is linearly proportional to the size of a block. A
more popular VLSI adder implementation is the Manch-
ester adder using dynamic (precharge) logic, where the rip-
ple-carry propagation delay of a block is proportional to the
square of its size. We shall examine two different CMOS
implementations of the Manchester adder, analyzing them
with the RC timing model, which provides us a unified way
of analyzing both CMOS circuits and interconnect. Based
on the RC timing model, we develop efficient (polynomial)
algorithms to determine near-optimal, as well as optimal
block sizes for the one-level Manchester adder with vari-
able carry-skip.

1 Introduction

1.1 Adders and carry-skip adders

The adder is the major component in an ALU. There are
many kinds of adders available for conventional number sys-
tems, we shall list some implementations of adders accord-
ing to Blaauw’s classification [3]. The adders’ synonym and
asymptotic time complexity are also given:

1. basic carry-ripple adders: O(n),
2. carry-predict (lookahead) adders: O(log n),

3. carry-skip (bypass) adders: O(n!/"), where [ is the
number of skip layers (for a linear ripple, constant
skip adder model), and

4. carry-select (conditional sum) adders: O(log n).
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Speaking in terms of the methods used in the design
of an adder to achieve high-speed calculation, the carry-
predict adders improve the performance of the basic carry-
ripple adder by making the slow signals arrive earlier. The
carry-skip adders improve the performance of the basic
carry-ripple adder by making the early signals available
sooner, trading the available time against resources. In
the carry-predict adder, the early signals are duplicated, at
the expense of additional resources, to reduce the number
of levels in the adder.

Variable skip adders have been investigated by many
researchers [2, 4, 6, 7, 9]. In these analyses, they assumed
all adder cells were implemented with static (restoring)
logic. Therefore the ripple-carry propagation delay was lin-
early proportional to the size of a block. This is in con-
trast to a more popular adder implementation in VLSI: the
Manchester adder using precharge logic [5, 8, 10, 12, 13],
in which the ripple-carry propagation delay is proportional
to the square of the size of a block.

In this article, we focus on the analysis and design of
CMOS Manchester carry-skip adders with variable size blo-
cks. Similar work was reported by Barnes and Oklobdzija
in [2]. However, we believe that our timing models for the
carry-ripple and carry-skip in dynamic CMOS adders are
more accurate. Qur analysis shows that the carry-skip de-
lay in a Manchester adder block is linearly proportional to
the block size, and is not constant as they reported. Also
our approach provides a general paradigm for analysis and
design, applicable to different models of ripple-propagation
and carry-skip.

1.2 Manchester adder

We are designing an n-bit adder composed of m blocks, as
depicted in Figure 1. Buffers are inserted in between the
blocks. Each adder block may not necessarily be of equal
size. Qur design method involves:

1. analyzing the timing of a z-bit adder block,
2. locating the critical path of the n-bit adder, and

3. determining the block sizes to reduce the delay of the
critical path.
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Figure 1: Variable-Size-Block Adder

1.3 Adaptation of Manchester adders for
dynamic CMOS

Figure 2 shows a 4-bit Manchester adder block implemented
in dynamic CMOS logic [13]. This adder circuit operates as
follows: the nodes are precharged during phase CK through
the p-transistors, and the circuit is evaluated during phase
CK. Depending on the values of the addends A; and au-
gends B;, as well as C;_y, a carry can either be generated
or propagated.

G; = A; A B; P, =A;® B; t=1,...,4.

The sum S; and the carry C; are determined by
Ci=G;VPACi,

Si=Ci.i®Ai®B;=Ci.1 0 P.

The critical path of this circuit is the serially connected
pass transistors in the carry chain. The bypass transistor
improves the worst-case carry propagation time if all carry
propagates Py, P,, P, P, are true.

The additional circuitry that is needed to generate the
bypass signal is shown in Figure 4. Note that even though
this circuit (to generate B) has similar circuitry to Figure
2, the node capacitance at the intermediate nodes in the
AND gate is less than that of the Manchester carry chain.

Figure 3 shows a slightly different implementation of
CMOS Manchester adder. Here the NAND gate serves as a
buffer and combines the carry-bypass and Cj signals. This
results in a faster carry-skip but longer buffer delay.

2 Timing analysis of an x-bit adder
block

The classical method of determining the speed of adder
circuits is by counting the number of gate delays. This
method is not appropriate for the CMOS implementations
of the Manchester adder shown in Figures 2 and 3 because
delays incurred by the pass transistors are not linearly ad-
ditive. We shall analyze the timing of these circuits using
the Resistor/Capacitor (RC) timing model.

2.1 RC timing model

In this model, transistors are modeled as linear resistors,
node capacitances as grounded capacitors, and intercon-
nection wires as lumped RC circuits [11]. Thus, circuits
and interconnect can be analyzed analytically in a unified
manner.
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Figure 2: 4-bit Manchester Adder with Carry-Skip: with
inverter

Bl
Figure 3: 4-bit Manchester Adder with Carry-Skip: with
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Figure 4: Carry-skip Signal Generation Circuit

2.1.1 Timing analysis of an x-bit adder block: cir-
cuit 1

Carry-skip delay: Consider an z-bit adder block. The
carry-skip mechanism is activated when all the pass transis-
tors Py, ..., P, conduct, and hence the bypass transistor B
conducts; altogether they form a closed-loop of transistors.
When the clock signal CK is high and the input carry Co
arrives, the circuit will start to discharge. The RC timing
model of this situation will be analyzed by a technique sug-
gested in [1], equation (6). The technique involves analyz-
ing the RC models of the = pass transistors Py,..., P, and
the bypass transistor B separately, and piecing together the
results with equation (2). With this in mind, referring to
Figure 5, the resistor ro models the conducting transistors
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Figure 5: RC Model of CMOS Manchester Adder (inverter
implementation)
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Figure 6: RC Model of CMOS Manchester Adder (NAND
gate implementation)

(serially connected) controlled by Cy and CK, similarly r;
models P; for i = 1,...,z, and finally r,;; models the by-
pass transistor B. Here we assume that ro = r; = r,¢; = ¢,
fore=1,...,z+1.

The signal delay of a series of £ + 1 RC-chain is

z+1 1 2
,=Z%M=Qﬁ%gijm
=1

where ;0 is the resistance of the path from node j to node
0. Now we analyze the RC model of the bypass transistor
individually, which is simply r.41¢,41= re; we piece these
results together to obtain the carry-skip delay of an z-bit
adder block

5(1‘) =t —

(1)

(z+1)re—-¢
r—(r—(z+1)r)
which can be simplified to

(r=@+1r) (2)

S(z) = %(31‘ + 2)re. (3)
Carry-generate delay: Consider a carry that is gener-
ated at bit one of an z-bit adder block: G; = 1, Cp = 0,
P, =0,G;=0,and P, =1;i = 2,...,2. The carry gener-
ated ripples through z RC chains; the carry-generate signal
delay is therefore equal to

z(z + 1)rc 2

G(a) = =55 ~ Sre.

4)
Carry-ripple delay: Consider a carry input (Co) that
enters an z-bit adder block, propagates through z — 1 pass
transistors, and is finally absorbed at the z** bit, i.e. P,
-1 = 1, P, = 0, and G; = 0;:¢ 1,...,z. The
carry-ripple signal delay is

$2
" —rc.

R(z) = Lz;i)rc : (5)
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2.1.2 Timing analysis of an x-bit adder block: cir-
cuit 2

Carry-skip and Carry-ripple delay: Now we analyze
the timing of the Manchester adder implemented with NAND
gate as depicted in Figure 3. The RC circuit model that
is used to analyze the carry-skip delay for this circuit is
shown in Figure 6. The signal delays for carry-skip and
carry-ripple are respectively

z+2

S() = Do riseac (6)
j=1
z+1
= (ro+ re41)coq2 + 70 Z ¢;=(z+ 3)rc
Jj=1

where rj.42 is the resistance of the portion of the path
between nodes 0 and z + 2, which is common with the path
between nodes 0 and j; and

2(e + l)rc ~ I—2rc
2 T

R(z) = G(z) = (7
Equations (3) to (7) indicate that for both implementations
of the Manchester adder, the carry-skip delay is linearly
proportional to the block size, whereas the carry-ripple de-
lay is quadratic. This enables us to consolidate the two

models into a single one.

C() .

z+1

Figure 7: Timing Model of the CMOS Manchester Adders

2.2 Critical path

The succession of switching elements that determines the
speed of a circuit is called a critical path of the circuit. The
critical paths show which parts of a design determine its
speed. There may be more than one critical path through
a circuit, in which case they all have the same delay.

In determining the critical paths of the adder, we shall
use the following list of assumptions.

1. All carry-skip circuitry is properly set at time zero.

2. Delay is additive across blocks.

. The carry-out signal of a block is initially 0, switches
exactly once and only if there is a carry-out from the
block.

. If the carry-in to block j is absorbed (that is, there is
a bit position in block j which does not propagate a
carry to the next bit) then the delay in determining
the carry-out of block j is at most R(z;).



For an n-bit Manchester carry-skip adder composed of
m blocks, the worst-case delay of the adder occurs when a
carry is generated at the beginning of some block ¢, skips
p blocks, and assimilates at the end of the block numbered
i+p+1.

The design problem for an n-bit adder can now be stated
as:

Given the timing models for carry-generate G(z),
carry-ripple R(z), and carry-skip S(z), find a
configuration ¥ = {21,22,...,Tm-1,Tm }, Where
z; is the size of block number 7, that minimizes
the critical path(s) of the adder, under the con-
straint that n = 372, @i.

Since the carry-ripple and carry-generate delays are the
same for both CMOS implementations, we shall use G(z) =
R(z) in our analysis. Of course, we have to consider the
delay E introduced by the restoring buffer in both imple-
mentations. After factoring out the common constants, we
obtain equations that describe the timing characteristics of
the adder blocks for both implementations:

R(z) = z*
S(z) = aiz+a
E =% (8)

where a;, az, and § are positive constants.

Similar work was reported by Barnes and Oklobdzija
in [2]. However, we believe our timing models for carry-
ripple and carry-skip are more accurate than what they
assumed. Precisely: our analysis shows that carry-skip time
S(z) for both models is not a constant but rather is linearly
proportional to block size (Equation (8)).

3 Determining block sizes

Due to the discrete nature of the problem, determining
the optimal configuration of the adder has involved ex-
tensive search techniques [2]. We shall introduce efficient
techniques for determining near-optimal, and optimal block
sizes.

3.1

A note on related work: Guyot et al. have suggested a
method to compute reasonably good block sizes for the case
R(z) = z,5(z) = a122+ a3, and E = 0 [4]. Their method is
based on the premise that the configuration is symmetric,
ie., T = Ty, To = Tm_1 etc. A distribution function f(z;)
is sought such that the “life” of a carry is roughly the same
between all pairs of blocks. This is a good idea, unfortu-
nately, their technique fails to apply to our model Equation
(8), as we shall demonstrate. Following their notation, con-
sider a carry generated at the beginning of block i, which
skips over subsequent blocks, and finally assimilates at the
end of block j. The “life” of the carry is

Problem with existing approach
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j-1
z2+ 6+ Z (m1zq + a2 +6) + zf.

g=i+1

(9)
A good approximation of il i1 (@17 +az +6) is

/j (alt + as + 6)dt
We seek a distribution function f such that
P+ 6+ / Y (af(t) + az + 6)dt + f2(y) = constant.

Setting z = 0 and differentiating the above equation with
respect to y gives

2f(y)f' () +aif(y) +aa +6 =0, (10)

and solving this differential equation yields a function

fy) = —(az + &)/ ar. (11)

Since a1, as, and é are positive constants, the distribution
of block sizes as suggested by f(y) is unrealizable.

3.2 Our first approach: a linear time
heuristic

We shall develop an O(n) time heuristic method to obtain
approximate solutions to this problem; an O(n®log n) time
algorithm for finding optimal solutions to this problem is
presented in Section 4.

The heuristic is also based on the premise of symmetry.
The strategy is to select one path, call it p, between a pair
of blocks, pick the rest of block sizes so that the delays of
other paths will not exceed p’s delay. Then, we minimize
the delay of p.

Consider a configuration # having an even number of
blocks. The life of a carry generated at block 1 and ab-
sorbed at the last block m = 2w is

22,2 + 22 (arz; + az2) + (m —1)8

i=2
22,2 + 2a; Z z; + (m —2)ay + (m — 1)8
i=2
= 21,% — 2a121 + a1n + (m — 2)az + (m — 1)§(12)

Tm

1

I

We partial differentiate equation (12) with respect to z; to
determine the minimum: z, = a;/2. Equation (12) sug-
gests that to reduce the delay of this path, we should:

1. pick z; = [a1/2], and

2. minimize m subject to the constraint that no other
path delay will exceed 7.




To ensure that no other path in the adder will have
delay greater than 7,,, we select the sizes of the subsequent

blocks z3, z3, ..., such that
R(z,)+6+S(z2)+6 > R(za)+6
R(zy)+ S(z2)+6 > R(z) (13)

or in general
i+1
R($1)+§+Z(s($,’)+5) 2 R(zin1) +6, (14)
=2
or even simpler
R(z:) + S(zi41) + 8 2 R(zi41)- (15)

Substituting the carry-ripple and carry-skip functions into
equation (15) gives,

ziy1 < (al-i-\/a]2 +4(z2+6+a2))/2 i=1,...,w (16)

which ensures that the critical path always originates from
block 1 and the number of blocks is reduced.

A similar analysis can be carried out for a configuration
having an odd number of blocks.

Example 1: Design a 24-bit adder, with timing model:
R(z) = 2%,5(z) = (3z +2), and § = 1. Using z; = 2,
and applying Equation (16), we obtain z, = 4, and z3 = 6
successively. This is in fact an optimal configuration ¥ =
(2,4,6,6,4,2), with maximum delay of 81.

Example 2: Design a 64-bit adder, with timing model:
R(z) = 2%,5(z) = (32 + 2), and 6 = 1. Using 2; = 2, and
applying Equation (16), we obtain the configuration

£ =(2,4,6,7,8,5,5,8,7,6,4,2),

with maximum delay of 218, by assuming an even number
of blocks. Likewise, by assuming an odd number of blocks,
we obtain

F=(2,4,6,7,8,10,8,7,6,4,2),

with maximum delay of 216.

4 A polynomial time algorithm for
finding optimal solutions

This algorithm does not work for arbitrary R(z), G(z),
and S(z). But it provides optimal solutions under some
reasonable assumptions that we stipulate below, together
with the ones that were stated in Section 2.2.

Additional Assumptions:

1. R(z) is a monotonic non-decreasing function in z with
a non-negative derivative.

2. S(z) is a linear function in = (i.e. S(z) = a1z + az).

3. R(z) — S(z) is non-decreasing.

4. The inverses of R(z) and R(z) — S(z) both exist.
5. R(2)— R(0) > S(z + 1) — S(x).

6. R'(z) > S'(z) for z > 2.

All these assumptions are respected for both CMOS Manch-
ester adders as shown in Figures 2 and 3, as well as for the
constant skip model used in [4, 9).

We shall assume for simplicity that R(z) = G(z) as was
the case for the derived RC models. For a configuration Z,
the delay of a carry generated in the first position of block
¢ and absorbed in the last position of block j is denoted by,

j=1
D(%,i,j) = R(z:) + R(z;) + Y S(z).
I=i+1

The worst-case delay of Z is given by

D(z)= max D(Z,i,7).

1<i<i<m

Let C, denote the set of all configurations of n bits. An
optimal configuration of n bits is one with minimum worst-
case delay over all possible configurations and the optimal
worst-case delay is

D = min D(T).
#eCn

Obtaining an optimal configuration of n bits for a given
R(z) and S(z) might appear at first glance a difficult prob-
lem, since it involves a mini-max optimization over a possi-
bly exponential search space. It does not satisfy the princi-
ple of optimality in the sense that a solution for n + 1 bits
may be quite different from a solution for n bits. There is,
however, a search strategy that allows us to ignore many
non-optimal configurations. Given two positive integers a
and b such that a 4+ b < n, we can efficiently construct an
optimal configuration whose worst-case delay is between a
block of a bits and a block of b bits. The construction for a
given pair a, b can be performed in O(nlogn) time, result-
ing in an O(n®logn) time algorithm for finding the optimal
configuration for n bits.

Let C.(a, b) denote the set of all configurations of n bits
with the worst-case delay between a block of a bits and a
block of b bits. That is, if ¥ € C,(a, b), then 3,7 such that
z; = a, ¢j = b and D(Z) = D(Z,4,j). Then

D =minD(Z)= min min D(Z
2€Cn @ 1<ab<n {fec"(“"’) @3
a+b<n

since the union of all of the Cn(a,b)’s is C,; an optimal
configuration must have a worst-case delay between a pair
of blocks whose sizes are between 1 and n. Note that the
Cn(a,b)’s are not necessarily disjoint since the worst-case
delay might be exhibited by more than one pair of blocks.



Note also that we neither fix the number of blocks nor the
location of the two blocks of known size. We only require
that the worst case is between a block with a bits and a
block with b bits.

Let ¢ denote the index of the block with a bits and let
j denote the index of the block with b bits. These indices
1 and j are used for reference; we do not know the exact
value of j — ¢ apriori. The values of 7 and j will only be
known when the construction is complete. Figure 8 shows
a configuration in C,(a,b). The blocks are indexed along
the horizontal axis and the height of each column is the
number of bits in the block. At the start only the number
of bits in blocks ¢ and j are known. The shaded regions
must be filled with the remaining bits under the constraint

bits

blocks

Figure 8: An element of C,(a, b).

that the worst-case delay remain between ¢ and j. These
constraints are represented by the curves anchored at the
points (3,a) and (j,b). This representation is similar to the
one used in [4]. In our case, the curves must be calculated
explicitly for each a and b due to the discrete nature of the
problem.

Constructing C,(a,b) amounts to minimizing the delay
between blocks ¢ and j subject to the constraint that the
delay between all other pairs of blocks must not exceed the
delay between blocks ¢ and j. Clearly the delay between
blocks ¢ and j is minimized by placing as few bits as pos-
sible in the blocks between i and j; we want to minimize
the number of bits which are placed in blocks between
and j (the slashed region in Figure 8). This amounts to
maximizing the number of bits which can be placed to the
left (respectively, to the right) of blocks ¢ and j subject to
the delay constraint (the dotted regions in Figure 8). The
delay constraints can be computed solely with respect to a
and b in most cases; it will be shown that the pathological
cases in which this is not true and the algorithm fails to
produce an element of C,(a,b) can be ignored.

To compute the size of the blocks to the left of i (re-
member z; = a) we proceed as follows. R~! is the inverse
of R(z).

Procedure Fill_End(a,i, R(z), S(z))

Ty — a

k—1

while (x> 0)
2hoy = R (R(w:) - Timy S(2,))]
k—k-1

end

End Fill_End
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Figure 9: Maximizing the number of bits to the left of a.

Starting with block i — 1 and proceeding to the left as
in Figure 9, the maximum number of bits is placed in each
block subject to the constraint

t

R(zi)+ Y. S(z.) < R(a).

s=k+1

(1n

Constraint (17) assures that D(Z, k, h) < D(&,1, h) for any
block h > i. Note that the integer nature of the prob-
lem requires us to make z; the largest integer satisfying
the constraint and recompute the constraint for z;_, with
respect to z;. With minor modifications, Fill_ End is also
used to determine the maximum number of bits and their
configuration which can be placed to the right of z;. This
greedy algorithm maximizes the number of bits to the left
of 7 under assumption 5, i.e. R(2)— R(0) > S(z+1)—S(x)
for all z > 0. In other words, adding one less bit to a block
would not relax the constraint of a subsequent block enough
so that 2 or more bits could be added. Constraint (17) is
based on a, the number of bits and the number of blocks in
between ¢ and k; it is independent of how the bits are con-
figured within these blocks. Suppose a non-greedy strategy
could place more bits to the left of ¢ while still satisfying
constraint (17) for each block to the left of :. In order to
increase the total number of bits, this strategy would have
to sacrifice skipping d bits to absorb the cost of rippling
through an extra d + 1 bits. If this were possible, it would
happen for d = 1 since S(z) is linear by assumption 2 and
R(z) grows at least as fast as S(z) by assumption 6. But
by assumption 5 it does not happen for d = 1.

Once we have computed the number of bits n; and n,
which can be placed to the left and right of : and j re-
spectively, the remaining bits n,, = n—n —n, —a — b
must be configured in blocks in between i and j. Since
by assumption 2, S(z) is linear in z, minimizing the num-
ber of blocks in between i and j achieves the minimization
of the D(Z,1,7). Hence this minimization can be achieved
by maximizing the number of bits in each block subject to
the delay constraints with respect to ; and z; imposed by
having D(Z,7,j) as the worst case.



Figure 10: Filling in the blocks between ¢ and j.

Specifically, each of the blocks k in between 7 and j must
satisfy
k
R(:L';) + 2 S(J,,) > R(Ik)
s=i+1
and
j-1
R(zi) < R(z;)+ 3 S(z,).
s=k
As illustrated in Figure 10, the blocks between i and j are
filled by calculating the maximum size of the next blocks
with respect to both z; and z; and filling the smaller of
the two blocks (ties are broken arbitrarily). If instead the
larger of the two blocks were filled, the last block might fail
to meet both constraints. The greedy strategy is optimal
by assumptions 1 and 2 since placing fewer bits in any block

cannot allow a greater number of bits to be placed in later
blocks.

The algorithm for filling the blocks between i and j is
given below. Let RS~! denote the inverse of the function
R(z)—S(z). For the sake of simplicity, the algorithm below
uses ¢ and j to index the blocks even though, as mentioned,
we do not know the values of ¢ and j apriori. An implemen-
tation would need to use a linked list or separate arrays.

Procedure Fill_Middle(a,i,b, 7, n, n,, R(2), S(2))

Np— N—N—Ny —a—0>b

le—1i
T—J
while  (np,, > 0)
neatl « RS (R(z:) + Liia S(z5))]
neztR — |RS™1(R(z;) + Tizjoy S(2)))
if (nn < mextL) and (n,, < nextR) then { 1141
Tp — Ny
ny — 0}
else if (nextL < nextR) then { I —1I+1
z; «— nextl
N — Ny, — nextl }
else { r—r-1
z, — nextR
N — Ny, — nextR }
end

End Fill_Middle

To establish the correctness of this method we need to
prove that the algorithm does in fact produce a configura-
tion in which the worst-case delay is between blocks z; = a
and z; = b. Unfortunately, if |a — b| is large enough, the
algorithm may fail to produce a configuration in which the
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worst-case delay is between blocks ¢ and j. Essentially, if &
is much larger than @, in computing the maximum number
of bits to the right of j the worst case of the constructed con-
figuration may be between blocks j and k for some k > j.
This situation is depicted in Figure 11. In this case the
maximum number of bits to the right of z; should not have
been determined solely with respect to z; = b. Fortunately,
we are able to dismiss this pathological case by showing
that it cannot lead to the optimal solution. We shall show
that in this case there is always some other pair o/, with
max{a’,5'} < max{a,b} for which the optimal configura-
tion has no greater delay. Hence the pair a and b can be
ignored.

[P

i J
Figure 11: Algorithm may fail when |a — b} is large.

The time complexity of both Fill_End and Fill_Middle
is O(nlogn). The O(logn) factor in the procedures stems
from computing the inverses of R(x) and R(z)— S(z) by bi-
nary search. R(z) and S(z) are implemented as subroutines
of the main program. Since there are O(n?) pairs of a,b to
try, this gives an O(n®logn) time algorithm for finding the
optimal worst-case delay configuration for n bits.

To establish that our algorithm indeed constructs the
optimal element of C,(a, b), we shall assume without loss of
generality that a < b since the delay computation is sym-
metric. By construction, Fill_End and Fill_Middle generate
an optimal configuration satisfying the following inequali-
ties; these inequalities must hold for any element of C,(a, b).

2 = (18)
VI<k<i, Ra)+ 3 S(z)<R(:) (20)
s=k+1
Vi<k<j, R(zx)<R(z)+ i S(zs)  (21)
s=i+1

Vi<k<j, Rlz)<Ra)+SS@) (22
s=k

Vi<k<m, Ro)+Y Se)<Re)  (9)



Unfortunately, these constraints are not sufficient to guar-
antee that ¥ € C,(a,b). Theorem 1 provides the additional
requirement. Lemma 2 guarantees that this condition is
satisfied if at least one block of b or more bits is placed in
between ¢ and j. However, the condition must be checked
explicitly when there is no such block added as is the case
in Figure 11. The additional condition introduced by The-
orem 1 ensures that the worst case is between blocks 7 and
j, as opposed to between j and some block k to its right

(G <k

Theorem 1 If 7 is a configuration satisfying inequalities
(18) through (23) for two block indices ¢ and j, and
=1 J+h=1
Vh>1, Rz)+ 3 S(@)> 3 S(ek) + Rz,
k=i+1 k=j+1
(24)

then the worst-case delay of T is between blocks ¢ and j.

Proof: Suppose T is a configuration satisfying inequali-
ties (18) through (24) for two block indices ¢ and j. We
establish

D(#,i,5) = D(%) = max D(Z, f,g)

by showing that for any pair of blocks f and g,
D(z, f,9) < D(,1,5)-

There are several cases to consider according to the relative
values of f, g with respect to é,j. If f < j and g > i then
by inequalities (20) and (21) a carry generated at block f
would arrive no later at block g than a carry generated at
block 7. Similarly by inequalities (22) and (23), if g > ¢ and
f < j then a carry generated in block f will be absorbed
at the end of block g no earlier than it would be absorbed
at the end of block j. In both of these cases D(7F, f,g) is
bounded from above by D(Z,7,7). The remaining cases to
consider are when ¢ < ¢ (and hence f < 7) or when f > j
(and hence j < g).
Case 1. (g <) In this case, since the blocks only increase
in size from ¢ towards ¢, the delay would only increase if
the carry were absorbed at block ¢ rather than block g.

Hence we need only consider the case where ¢ = 7. By
inequality (20), we have

Rep)+ 3 S(z.)+ R(z:)
.s=fA+1

R(z) + 5,: S(zs) — S(zi) + R(z:)
s=f4+1

R(z;) + R(z;)

R(z;) + R(z;)

D(%,1,3).

D(z, f,1)

ININ A A
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Case 2. (f > j) In this case, since the blocks only increase
in size in moving left from f towards j, we need only con-
sider the case where f = j. The inequality below follows
from condition (24) with h =g — j.

D(,i,0) = Riz;)+ 3 S(z.)+Rla,)
s=j+1
< R(;)+Re)+ 3 Sa)
k=it1
< D(Z,4,7).

[m]

Lemma 2 If 7 is a configuration satisfying inequalities (18)
through (23) for two block indices ¢ and j and

3k, i<k<j and zx 2 b,
then the worst-case delay of ¥ is between blocks ¢ and j.

Proof: Suppose the largest block added in between i and
J is k and z¢ > b. Then z satisfies inequality (21) which is
the bound computed for it with respect to i. Subtracting
S(zx) from both sides of inequality (21) gives us,

k-1

R(z:)+ Y. S(z.) 2 R(zi) — S(s)-

s=i+l
Adding the skip of blocks k through j — 1 to the left-hand-

side does not alter this inequality,

R+ Y Se)2 R - S, (29)

s=i+1
Since zx > b and R(z) — S(z) is non-decreasing by assump-
tion 3, we have
R(zx) — S(zx) 2 R(z;) — S(z;)- (26)
By rearranging inequality (23) we obtain
J+h—1
Vh>1, R(z;)~ S(z;) > R(zjwn)+ >, S(zs). (27)
s=j+1

Putting (25) through (27) together we obtain,

J-1 J+h-1
Vh21, R(zi)+ 3, S(z,) 2 R(zjn) + 3 S(z.),
s=i+1 s=j+1

which by Theorem 1 ensures that the worst-case delay is
between blocks ¢ and j. (m]

Finally we must show that when condition (24) is not
satisfied by the configuration constructed by Fill_End and
Fill_ Middle, we can ignore C,(a,b) since there is always
an equivalent or better solution in some C,(a’,b’) where
max{a’,b'} < b. By Lemma 2, if condition (24) is not sat-
isfied by the configuration constructed by the algorithm,
then no block was added in between ¢ and j with b or more
bits.



The next theorem shows that if Fill_End and Fill_Middle
fail to produce a configuration satisfying condition (24),
then we can ignore the pair a, b in our search for the optimal
configuration.

Theorem 3 If 7 is the configuration constructed by pro-
cedures Fill End and Fill Middle and it does not satisfy
condition (24), then there exist o’ < b and ¥ < b such that

in, D(7) <

min min D(Z).
2eCnlal b’ 5

2€Cn(a,
Sketch of Proof: If the configuration constructed by pro-
cedures Fill End and Fill_Middle does not satisfy condi-
tion (24), there must be some & > 1 such that, the delay
between blocks i and j is exceeded by the delay between
blocks j and j + h. We can show that in this case a < b,
since otherwise inequality (24) would have been satisfied.
Let 7 be an element of Cn(a,b) with minimum worst-
case delay and the fewest number of blocks with exactly b
bits. Then Z must satisfy inequalities (18) through (23) as
well as condition (24) for some pair of indices i’ and j/. We
can argue that there is no block with more than b bits in
Z. We can also show that there must be some block % to
the right of j* (' < k), which could be increased by one bit
without causing the delay of a carry generated at i’ to be
absorbed later than if it were absorbed at j’. This is true
because block sizes which satisfied inequality (23) had to
be reduced in Z in order to satisfy inequality (24). Using
this fact we modify Z by moving one bit from block j' to
block k to obtain a new configuration 7. Specifically, 7 is
the configuration defined by,

zj—1 l=j '
=< z+1 =k
z l# 7 and 1 # k.

Using the assumptions about R(z) and S(z) stated at
the beginning of this section, we can show that D(y) <
D(Z). Basically, since only block & increased in size in
moving from ' to §, we need only to show that any carry
involving block % in # is no greater than the carry between
block i' and j’ in Z; all other carries in § are bounded by
their counterparts in 7.

The final step is to show that § € C,(’, ¥') for max{a’, b'}
< b. We know that 7 doesn’t have any block of more than
b bits since Z didn’t have any and block  in 7 had to have
fewer than b bits. (In fact, we can show z; < b — 1.) Sup-
pose § € Ca(d',¥). If b’ = b we can show that 7 € Cn(a,b),
which is not possible since it has one fewer block of b bits
than 7. The remaining case is @’ = b. This block of b bits,
say h, would have to be in between blocks i’ and J', since
a < b, ¢ < h and D(¥,h,g) < D(§,7,g) for all blocks g.
Again we establish # € C.(a,b), which is impossible. So
both a’ and ¥’ must be less than b. a
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The buffer delay & is not treated explicitly by this algo-
rithm, but it is easily handled by adding § to both R(z) and
S(z). The resulting delays between any two blocks will be
off by exactly one §. This has no effect on the optimization
since each pair is equally overcharged.

Example 3: We redo examples 1 and 2 from the previous
section for model R(z) = 2%, S(z) = 3z + 2, and § = 1.
Our algorithm reports # = (2,4,6,6,4,2) with delay 81 as
the optimal configuration for 24 bits, while for 64 bits it
finds a better configuration: (2,4,6,8,10,10,9,7,5,3) with
delay 215.

To illustrate the nonlinear growth in the size of the
blocks, consider the optimal configuration for 200 bits of
delay 651,

(1,4,6,8,9,11,13,14,16,18,15,16,15,13,11, 10,8, 6, 4, 2)

which took a Sun 3/60 326 seconds of cpu time to compute.

5 Conclusions

We have analyzed two implementations of the Manchester
carry-skip adder in CMOS with the RC timing model. Based
on the RC timing model, we have developed efficient (poly-
nomial) algorithms to determine near-optimal, as well as
optimal block sizes for the one-level Manchester adder with
variable carry-skip.

For one-level skip, the time complexity for both of the
adders is O(n).
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