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ABSTRACT

A general theory of serial-input serial-output polyphase convol-
vers based on modules (phases) producing one convolved output
every p samples, is presented. Methods are exposed for design-
ing such convolvers for arbitrarily assigned weights and samples
lengths and number of convolution terms, under the assumption
of zero, or assigned, interval between successive samples, mini-
mum number of phases and minimum intervals between succes-
sive convolved output from each phase. Two types of solution
are shown, the first based on the use of distinct serial- paral-
lel multipliers, the second on multipliers partially shared among
successive convolution terms. A structure based on bit-slices is
presented, permitting a convolver with assigned parameters to
be designed from a stack of slices.

1. INTRODUCTION

Convolution is one of the most important operation in digital
signal processing, and a number of circuits have been proposed
for it. It is beyond the scope of this paper to present a detailed
survey, but it seems appropriate to underline the most notable
development steps.

The need for fast operation (particularly, but not exclusively,
in communication) has led to an extensive use of parallel archi-
tectures e.g. by Swartzlander, [4].

Specialized modular schemes have been proposed by Kung,
[5], based on systolic architectures.

Fast serial-input serial-output multipliers were proposed as in-
teresting alternatives to parallel schemes (see a survey by Dadda
and Ferrari in [1]). Serial-input serial-output convolvers have
received in recent years much attention, being particularly in-
teresting for VLSI implementation, due to their low pin count
and modularity. A survey, together with a new general sys-
tolic scheme, has been proposed by Danielsson [7], and a notable
scheme systolic at bit level by McCanny et al.[8,9,11]. Circuits for
implementing inner product have been proposed by Sips [6] for
serial-input serial-output units to be used in parallel processors.

In this paper we present an extension of a scheme proposed in
[13], based on the concept of polyphase architecture, in which a
convolver is composed by p sub-convolvers, or phases, i.e. circuits
producing one convolved output every p samples. The scheme is
semi-systolic, requiring the broadcasting of samples bits.

The design method suggested in the above mentioned paper
was essentially to examine what can be done with one, two,
three, etc. phases, obtaining interesting schemes particularly for

78

samples and weights of equal length, but not offering a general
method of designing schemes having important properties, in-
cluding: 1) arbitrarily assigned samples and weights length, 2)
zero samples separation (i.e. the most significant bit of a sam-
ple being followed immediately by the least significant one of the
following sample) thus offering the maximum possible sampling
rate compatible with the bit rate determined by the adopted tech-
nology, 3) minimum logically possible number of phases and 4)
minimum logically possible interval between the convolved out-
put from each phase. These conditions are assumed as necessary
for an optimum design of convolvers belonging to the polyphase
family. Moreover, a bit-slice structure will be obtained, thus per-
mitting an easy design and the adoption of fault tolerant schermes.
In the proposed schemes the attainable bit rate is determined by
the delays trough a flip flop and a full adder.

In the following it will be first shown that a canonical scheme
can be drawn, obeying the first of the above conditions. It will
then be shown how the canonical scheme can be reduced so that
the remaining conditions are also fulfilled.

2. A CANONICAL SCHEME

Convolution is obtained by multiplying N regularly time-spa-~
ced samples X, Xj_,cev--- , Xk—n+1 with the coefficients or
weights Wy _y, Wy _a,-+- , W,

N-1

Yk = Z WiXi+k—N+l

=0

It will be assumed for the moment that both weights an samples
are non-signed integers of n,, and n, bits respectively. The case
of two’s complement numbers will be treated later.

Weights are assumed in parallel form, stored in static registers,
so that each term in the convolution can be implemented by
means of a serial (the sample)-parailel {the weight) multiplier, as
shown in fig.1a. Note that n, clock times after the first sample
bits, the n, bits long, least significant part of the product, will
be stored in the shift register at the left of the multiplier output,
while the most significant part will be stored in redundant form
in the two, n,, bits long registers included in the multiplier. After
n,, more clock-times this most significant part will also be in the
shift registers along with the previous least significant part, for
a total length of n,, + n, bits. Such multiplier-shift units will be
represented in the following in a more compact way as shown in
fig.1b or lc.

Consider now an array of N such multiplier-shift units, each
one displaced by n, stages to the right of the preceding one, as
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fig.1: a): The logical scheme of a serial parallel mul-
tiplier. b,c): A compact representation of it.
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fig.2: A canonical polyphase convolver (n, = 4;
n, =2; N=09;n,, =0).
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shown in fig.2 (upper part, phase 0) where the condition n,, >
n, has been assumed, and suppose that the lengths of the shift
registers is such that their rightmost stages are vertically aligned
with the rightmost side of the bottom multiplier. The total length
of the first, topmost unit is: L, = (N — 1)n, +n,

The outputs of all shift registers (and of the bottom multiplier)
feed a serial-input (N inputs) adder [2,3]. Assume also that the
first sample X, is applied to unit 0, where the product Wy X, is
generated (note that, in the following, X’s indexes are: kmod N );
the second sample is then applied to unit 1, generating W, X;
that is aligned with W, X, in unit 0; and so on for the remaining
units. A sample distributor is necessary to obtain the proper
sample at the input of each unit, see fig.2. At the beginning of
sample Xy _;, all products appear with their least significant bits
at the input of the N-input adder, and, after the corresponding

delay, the first, least significant bit of the first convolved, Yy _1,
is produced, followed by its successive bits.

If now the next sample, Xy, is applied to unit 0, and the fol-
lowing X 41, -+, Xon -1 to the remaining units, the convolved
Yan -1 is generated. The circuit thus generates one convolved
every N samples. Precisely, it produces all ¥; with kmodN = 0.

In order to obtain the convolved Y; with kmodN = 1 an
identical circuit can be used, whose inputs are: X; for unit 0, X>
for 1,-+-, etc. For obtaining all convolved, N such circuits are
necessary, each with N inputs, where the samples are cyclically
permuted as shown in fig.2. In other words, the N circuits are
fed at any given time, with the same sample, differently phased.
Each of the circuits described will be correspondingly called a
phase, composed by N multiplier-shift units that will be called
sub-phases. Phase ¢ will produce all Y} with kmodN =1.

Such convolver certainly implements the first condition, i.e., of
working with zero sample’s interval, but it appears rather expen-
sive, requiring: N? multipliers (each n,, stages long), 1/2N(N —
1) flip flops in the shift registers and a N inputs serial adder.
It has, nevertheless, a very simple structure: we consider it as a
canonical scheme that can be the starting point of a procedure
leading to more economical circuits.

Before studying such procedure, let us consider some general
properties of a generic serial input - serial output convolver hav-
ing p output ports (p > 1) (and obviously one input port).

Having already called n, and n,, the samples and the weights
lengths respectively, we call n,, the samples separation, i.e. the
number of clock times between the most significant bit of a sam-
ple and the least significant bit of the following sample; n,,, is sim-
ilarly the separation between successive convolved output from
a given port. Note also that n,, and n,, bits can be given ar-
bitrary values (e.g. zero, or sign-exstension, or whatever else is
convenient).

The sampling rate is: f, = n'; n,, = n, + n,, being the
sampling period.

The length of convolved Yy is: n, = n, + n, + n' where
n' = [log, N|. The convolved period is nyy, = ny + npy.

In a p output ports convolver, in a sampling period n,, a total
of pn,, bits is output from the p ports, and, since one convolved
is produced for each sample, it must be: n,, = pn..

A convolver with a single output is therefore conceivable only
if Nee = Ny, e if npe = npy +ny +n'. For smaller ny, it is
necessary to provide two or more output ports.

For an assigned n,, the minimum number of ports, p,., can
be determined by noting that the number of bits output from
all ports for each sampling period, which is n,, bits long, must
be the minimum multiple of n., capable of accommodating one
convolved n, bits long. In other words, the minimum number
of ports is: p, = [ny/nez], i.e. the smallest multiple of n., not
smaller that n,.

Consequently, for n, multiple of n;;, pm = ny/n:, and the
convolved separation n,, in each output will be zero.

For n, not multiple of n,., it is necessary to assume a non zero
convolved separation. Its minimum value, n,y,., is given by the
smallest number to be added to n, so that n, + nyym is multiple
of ny,. This can be used as a procedure for evaluating [n, /n..|:

[ny/ne] — (ny + npym)/nez = Pm (4)

which obtains both p,, and n,ym.
Note therefore that p,, implies n,,,, and viceversa.
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fig.3: A sub-phase scheme with regularly spaced mul-
tipliers.

Such results are independent from the architecture adopted,
since they derive from purely logical global constraints. In case
of polyphase architecture, p,, is also the minimum number of
phases.

Note that the canonical scheme is composed by p = N phases,
in general larger than p,,.

The output ports can be used in ways different from the one
described for the polyphase architecture (i.e. each convolved be-
ing entirely output from a given port).

As shown in [12], one can partition each convolved in portions
whose length is equal to n,: the least significant portions of the
subsequent convolved will be output from a port; the following
more significant portions from another port, and so on.

In a third way, the convolved could be expressed with a se-
quence of bytes, each composed by p bits.

In relation to the circuits fed by the convolver outputs, the
convolved Y, can be transformed accordingly, if necessary: it
is easy to design a circuit for transforming any of the outputs
formats into another, even different from those just described
(e.g. into convolved in full parallel from, rounded to a prescribed
length).

3. REDUCING THE CANONICAL SCHEME

It has been noticed that in the canonical scheme one convolved
output every N samples is produced in each of the N phases, and
that consequently successive convolved outputs from the same
phase are separated by an interval n,, = Nn, — n, (baving
assumed n,, = 0) usually larger than the minimum found in the
preceding paragraph.

A first step in the reduction process consists then in designing
a circuit affording p,, and npym.

Note that in the canonical scheme the number of phases N
is equal to the number of sub-phases and to the length of the
cycle in the X-inputs distributor. We first look at reducing such
numbers from N to the smallest possible value, p,,.

In order to obtain this, let us consider the structure of a phase.
We note first that, whatever is its internal architecture, all N
weights have to be present, since the phase output is a con-
volved and therefore is the addition of products of samples with
all weights.

A reduction of the sub-phases number can thus be obtained
only if each sub-phase includes more than one multiplier. This
can be obtained by structuring each sub-phase as shown in fig.3
scheme, i.e. if it is composed by cascading several serial-parallel
multipliers and shift registers. Such a circuit has the following
properties:

- if the X input to a multiplier is kept zero, and if the flip- flops
internal to the multiplier are initially cleared, the multiplier
works as a shift register;

- if the internal flip-flops of a multiplier contain data, and the
X input is non-zero, the multiplier output is the sum of the
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fig.4: a) A convolver with minimum number of phases.
b) Merging sub-phases.

initial internal content with the product W; X ;

if two adjacent multipliers are spaced n* stages apart, and
they are operated synchronously (e.g. with the same X,), a
train of successive, distinct (i.e. non overlapping) numbers is
generated .and shifted to the right, where each number starts
in the leftmost multiplier 0 as the product Wy Xy, then is
incremented by W, X1, W2 X 42, etc. in the following mul-
tipliers, provided each number, a partial convolved, will never
reach a length larger than n*.

Note that fig.3 scheme is the traditional systolic structure ap-
proach to convolution, requiring the successive samples to be
separated by a sufficiently large interval n,,, (> n,, +n') as shown
in the preceding paragraph. The same scheme can be used to im-
plement polyphase structures, assuming n* = n,, = ny + npym,
where n,,,,, is determined by the procedure (A) given in the pre-
ceding paragraph. (Note that in such procedure, the total length
ny, = n' + n, + n, of the convolved must be used, and not the
smaller n, + n, length of a single product, since in this case
we could have interference between partial convolved during the
successive accumulation of products, or in the final adder).

The scheme thus obtained for the same example as in fig.2
(nw =4,n, =2, N =09, n,, = 0) is represented in fig 3a, where
n' =4, n, = 10 and p,, = [n,/n;] = 10/2 = 5, so that five
phases are necessary and a zero separation n,,,, exists between
successive convolved outputs.

The results given by the general procedure can also be di-
rectly obtained by reasoning on the canonical scheme, in order
to obtain the sub-phases structure. The new sub-phases can be
obtained by merging two or more canonical sub-phases, by ap-
plying the rule that two or more multipliers can be placed in
the same sub-phase if their spacing is such that they can operate
simultaneously (i.e. with the same X;) on two distinct partial
convolved. In order to do so, their spacing (see fig.4a) must be
a multiple of n, (since in the canonical scheme the multipliers
spacing is n.) not smaller than n,,. This is just another way of
telling the condition expressed by (A).
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fig.5: A convolver with shared multipliers.

Note that the sub-phases in the reduced scheme can be con-
sidered as obtained by merging all sub-phases in the canonical
scheme that are fed by samples X, with the same kmodp,, in-
dex. Note also that the adder in each phase requires a number
of inputs (p,, ) smaller than in the canonical scheme (N).

A further reduction can be obtained by observing that some
of the new sub-phases can be merged again as shown in fig.4b.
The merging can be performed between two (or more, in general)
sub- phases whose multipliers do not overlap. This multipliers,
however, must be fed by the same samples as in the original sub-
phases. Since their distance in the new subphases is smaller
that in the original ones (n,), they add to the convolved their
respective terms before the convolved are completely output from
the preceding multipliers. (Note also that in general the merging
process offers various choices of sub-phases to be merged).

The final result of the described reduction process applied to
a phase of fig.4a scheme is shown in fig.4b.

The case n,, < n, can be treated in a similar way. For brevity
reason, and since the case n,, > n, is more common in applica-
tions, it will not be considered any further.

4. A SCHEME USING SHARED MULTIPLIERS

It will now be shown how the scheme of fig.4b, drawn for an ex-
ample with n,, > n,, can be further simplified. Note first that in
such scheme each phase is composed by at least two sub-phases,
due to the fact that multipliers in the canonical scheme are over-
lapped, and cannot therefore belong to the same sub-phase. Note
however that whenever any multiplier is operating, all multipliers
that are overlapped with it are inactive, since samples are cycled
among sub-phases and consequently only one sub-phase can be
active at any given time (i.e. it can have at least one multiplier
operating, the other sub-phases simply shifting their content). It
is then possible to adopt the circuit shown in fig.5, where each
phase is composed by a continuous array of full adders, each
one being fed by the logical sum of outputs from the gate ar-
rays which are fed by the weight registers overlapping in that
particular stage.

The overlapping multiplier stages can then be considered as
shared among two or more multiplications, hence the denomina-
tion given to the new circuit.

The new circuit requires a smaller number of component and,
moreover, it offers a more regular structure, as it appears in

comparing fig.4 with fig.5. The latter property is particularly
important for the design of modular and bit-sliced version, as it
will be seen in a following paragraph.

As far as total complezity is concerned the two general schemes
of fig.4b and fig.5 can be compared as follows. Note first that both
are composed by the same number of phases. In addition, both
schemes comprise a sample distributor and a set of weight regis-
ters, which, besides being identical, account for a small fraction
of the total complexity, due mostly to the phases.

A phase in fig. 4b is composed by N multipliers, each of
length (i.e. number of stages) n, , by some shift registers and by
the final adder (whose effect on cost is negligible). For simplicity
only the multipliers will be considered. The total number of
multipliers stages is: Ls = n, N and, considering the case of
n, multiple of n,: Ly = kn.N; (k integer). In a phase
in fig.5 scheme , the total length Ly of the shared multipliers is:
Ly = (N-1)n, +n, or,forn, =kn,: Lg = (N+k—-1)n,. We
have then: I!:a = H@ In practical cases k can be at most 3

¥
or 4. If we consider the case of N > 1 (e.g. several tens),

La

~ k.
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For these reasons we will refer mostly to the shared multipliers
scheme in the following.

The preceding schemes have been designed for non-signed
numbers, and some modifications are necessary for samples and
weights in two’s-complement form.

Several methods can be used for two’s-complement factors
multiplication (see [10] for a survey). Among them, a most con-
venient method is the one already used in a similar convolver {12],
based on a transformation of the product-array for obtaining an
array composed with positive terms only, and by the addition of
a negative constant to its value.

The array transformation consists in complementing all the
array terms containing one and only one sign-bit (i.e. those terms
having negative weight), and affects the gate-array producing the
successive product array rows to be added in the serial-parallel
multipliers. It requires a new clock (a »word-clock”) given by a
pulse corresponding to each sample sign-bit.

The constant to be added to each product is:
Cl — ,2n,+nm—2 + Zna-l + Zn.u—l

and can be accounted for with a single constant Cy = NC; to
be added to the convolver output.

A similar method has been proposed by Agrawal (3], and used
by Sips [6] in an inner product scheme, for adding simultaneously
numbers in two’s complement form.

The above modifications are not explicitly represented in the
schemes.

5. SCHEMES FOR DIFFERENT OPTIMIZATION
CRITERIA

The schemes discussed in the preceding paragraphs obtain the
maximum sampling-rate for a given bit-rate, since samples follow
each other with zero interval, n,, = 0. If such interval is allowed
to be non zero, different schemes can be obtained with a smaller
number of components. It is therefore interesting to study the
trade-off between circuit complexity and samples interval (and
consequently sampling-rate).
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fig.6: Design parameters vs. samples separation for
a convolver with n, = 5; n,, = 15; n’ = 10.

This can be ?a§ily done using procedure A with an assigned
n,2 > 0. The minimum number of phases is then

P = [y /145 ]

and, since [n, /n¢;] < [ny /n,], a number of phases smaller than
in the case n,, = 0 can be obtained. The procedure:

[ny/ne] = (ny +npy)/(ns + Npe) = Pm

can be used in various ways, e.g.:

- gfven ny and ne,, find p,, and nyym (as suggested before);

- given ny; and p,, find nyym;

- given n,, n, and p,,, find n,, and n,,,.
A..s an example, fig.6 shows the results obtained for a convolver
with n; = 5; n, = 10; n' = 10. The number of phases p,,
and the' convolved separation n,,,, are plotted vs. the samples
separation ny;. Note that the convolver cost can approximately
be assumed as proportional to p,,.

It can be seen that the solutions corresponding to n,, = 5
b

or 10 or 25 are characterized by n,,,, = 0, i.e. to the maximum
convolved rate.

6. SCHEMES MODULARITY

Pa.rtitifming a scheme into modules is an important design
step, partl‘cularly for VLSI implementation. The polyphase sche-
mes descxijed can be partitioned at different functional levels
thus offering a valuable flexibility. ,

] A}:; the first, global level the system appears as a linear array
of phases, as can be seen in figures 2,4 and 5 i
remarks can be made: ’ + The folloving
- The sarrfpl_es di§tributor as drawn in the figures is a common
p:rt. It- i8 in principle possible to include a distributor in each
phase, in such a way that, with appropriate settings, their

operation is equivalent to the single one ( obtaini
taining al
reduce the bus area). ( Bekote

- A second common part is the set of weight registers. They
h'ave been drawn in the figures as a part shared by all phases

N b

since these use the same weight set. The connections to the
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fig.7: Sample-busses with cyclic permutations.

multipliers are very regular, though rather numerous, and

could be replaced by associating a weight register set to each

phase.
A second level of modularity exists within each phase. Referring
to fig.4 and 5 schemes, it can be seen that a periodicity p, can
be noticed within each phase if N is sufficiently large. Such peri-
odicity permits to define each phase as a linear array of identical
parts, each including p,, multipliers in fig.4, or p,, gate-arraysin
fig.5.

Looking at the phase scheme in the same figures it can also be
seen that they can be partitioned with vertical sections, defining
sectors of equal width n,.

The sectors structure is periodic with p,, period. Each sector
can moreover be partitioned in identical bit-slices, which is the
third level of modularity. Sectors become identical if the X-busses
feeding the gate-arrays are cyclically permuted at the sectors in-
terfaces, as shown in fig.7 examples. In cases where n, is multiple
of n, (fig.7a,b) two types of slices are needed, having the same
internal composition and differing only in the connection scheme
with the following (or the preceding) slice. Note that the cyclic
permutation is obtained at the sector’s interfaces.

In fig.7b n, = 2n., and two arrays overlap in each sector.
Fig.7c represents a case in which ny, /n. is not integer, requiring
two slices with a different internal structure. It must however be
noticed that the difference consists in having one or two gates,
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fig.8: a-A shared-multipliers scheme for n, /n, = 2;
n’ = n,. b-Same scheme with cyclic phase permuta-
tions.

might be convenient to implement a single larger slice containing
the same stages of all p,, phases (a convolver-slice vs. a phase-
slice).

There is therefore a choice to be made: implementing phases
as units, obtaining the convolver by associating p,, phases, oper-
ated in parallel; or implementing modules composed by several
convolver-slices (or by few convolver sectors), and obtaining the
convolver by cascading such modules. Note that in the same way
also a single phase or a group of phases could be implemented.

Fig.5 scheme can be transformed into an equivalent one, pro-
vided the transformation does not affect the connections between:
multiplier sectors of the same phase; weight registers and phase
sectors, gate-arrays sectors and corresponding weight registers
and samples.

Fig.8 shows two equivalent schemes for a convolver with:
n,/n, = 2; n' = n,. Fig.8a is drawn with the same rules of
fig.5. For simplicity, the samples distributor has been omitted;
moreover, each weight Wy is splitted in two parts, W, and W7,
composed by the least, and respectively the most significant n,
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bits. All W and W”, can thus be accomodated in two registers.
It can be seen in fig.8a that in sector O-phase A only samples
0 and 1 are used (of course, at different times), and the same
samples pair is used also in: sector 1-phase D, sector 2-phase C,
sector 3-phase B, etc.

Similarly, samples 1 and 2 are common to sector O-phase B,
sector 1-phase A, sector 2-phase D, sector 3-phase C, etc.

Samples 2 and 3 are common to sector 0-phase C, sector 1-
phase B, sector 2-phase A, sector 3-phase D, etc.

Samples 3 and 0 are common to sector O-phase D, sector 1-
phase C, sector 2-phase B, sector 3-phase A, etc.

All parts in sector 1 can be aligned with sector O parts so
that parts on the same row are fed by the same sample-pairs,
see fig.8b. The continuity between multipliers belonging to the
same phase, is obtained by means of the connections shown in
same figure, performing a cyclic permutation of phases. Note
that the same connection scheme is used in all subsequent sectors
interfaces.

The new scheme can conveniently be drawn on a cylindrical
surface, where the gate-arrays will run in parallel to the cylinder’s
axis, while sectors of each phase will follow each other stepwise
on a helicoidal line.

The new scheme offers some advantages, the most important
being that the samples permutations among phases are not more
necessary (they have been replaced by the phase permutations
at the sectors interfaces). Moreover, only two (in general, k =
n, /n,) samples are needed in each row (to be compared to four
in fig.8a). Note also that weight registers are arranged in such
a way that their vertical connections with the gate-arrays are
uniform all over the scheme.

Fig.8b scheme has been shown as derived from fig.8a, but it
can be drawn directly, with the following rules (for the case of
n, and n' multiple of n,):

1. given n,, n, and n', determine p,, and nyym (procedure A);

2. arrange p,, multipliers rows, each composed by N sectors n,
stages long, cyclically connected at each sector interface, as
shown in fig.8b;

3. arrange the weights in k = n, /n, registers, for W,, W7y,
W% ... (as shown in fig.8b for k = 2);

4. arrange similarly k gate arrays (each with n, N gates) for each
multiplier rows, fed by a sample X and by W', W” or W"',---
registers, respectively;

5. design a sample distributor for p,,, outputs Xo, X1,***, Xpm-1
feeding the W' gates-arrays. For k = 2, the same p,, outputs
feed the gates arrays for W”, one row earlier than for W’. For
k = 3 the same p,, output of the sample distributor feeds the
gates arrays for W” and W”' one row and respectively two
rows in advance.

Note that in all figures the sample distributor has been placed at

the left of the gate-arrays, so that X-pulses propagate from left

to right, but it could alternatively be placed at their right. A

comparison between the two schemes has been done in [12] for a

similar case.

The operation of the new fig.8b circuit is the same of the fig.8a
circuit from which it has been derived, since the transformation
used does not affect the operation, as can be directly verified on
fig.8b.

Assume the first sample as an X;: it can be seen that a zero
weight is input to sector O-row O (phase A) multiplier, while



WX, is added to sector 1-row O (phase D) and W,” X, is added
to sector O-row 3 (phase D). At the end of sample X, the first
term of convolved Y, will be: in sector 2-row 1 (the least signifi-
cant n, bits), in sector 1-row 0 (the following n, bits), in sector
O-row 3 (the n, most significant bits). The first term of convolved
Yo has been produced in phase D.

Note that sample X, will be multiplied by all following weights:

the corresponding results must however be disregarded since they
do not contain the term Wy X,. The first convolved will appear
at the occurrence of sample Xy _,, at the output (N — 1)modp,, .

With the following sample X, the first term W, X; of the
convolved Y; is generated in phase A with the same procedure
Jjust described for Y; in phase D. Simultaneously, the second term
W, X, is added in phase D to the first term Wy X,: the n_ least
significant bits of W, X, will be added to the n, least significant
bits of W X, in sector 2-row 1 and the n, least significant bit of
the result will be shifted in sector 3-row 2, while the 2 n, more
significant bits will be added to the 2 n, most significant bits of
Wo X, in sector 1-row O and in sector 2-row 1, the result being
shifted in following sectors-rows of same phase D.

Note that the carry from the first addition is automatically
taken into account, since each phase is composed by a continuous
array through the cyclic permutation connections.

Note also that the total length allotted to a partial convolver
in each phase is 4n, bits, i.e. 4 sectors, 3 for each product, 1 for
the overflows generated in the successive product accumulation.
The 3 n, least significant bits (i.e. three sectors) are filled by
the first term, Wy X,; at the end of X; the carry produced by
the partial convolved Wy X, + W, X; will be stored in the last n,
bits long sector, that will operate as a counter of the overflows
produced by the successive accumulation of products.

As it can be seen from the figure, also the new scheme can be
decomposed into modules.

In cascading modules, no matter in what scheme, a problem
arises if these are in distinct chips (e.g. in WSI), in relation to
the transmission delay in inter-chip connections. Such a problem
has been briefly discussed in [13] in relation to the timing aspects
in similar schemes and with the following conclusion. Samples
and clock must be fed at the left side of the structure, in order
that signals propagate in one direction only, left to right. It
is consequently possible to interleave with the normal slices, at
regular intervals, buffer slices, composed only by a flip-flop for
each signal. Buffer slices provide reshaping and risynchronization
of clock and signals. Moreover, since they do not include full-
adders, they can be used at the interface between two cascaded
chips as a buffer stage for the capacitance load of the connection,
thus minimizing the effect on attainable bit rate.

In case of only one type of slice it becomes possible to im-
plement convolvers which are reconfigurable, i.e. they can be
programmed for arbitrarily assigned n,, n, and N. This pos-
sibility has already been discussed in [12], and can be obtained
by means of gates for the selection of the inter-slice connection
scheme, operated by a variable stored in a flip-flop.

These can be arranged in a configuration control register. A
similar arrangement can be adopted for by-passing faulty slices,
thus obtaining fault-repairing schemes.

A significant comparison can be made between the polyphase
fig.8a scheme and the elementary monophase scheme of fig.3, in
terms of hardware requirements and performance. Consider the
case of n, = kn, and n' = k'n,. The numbers npap of full
adders and ngp, of flip flops in the polyphase scheme can be
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shown to be:

npap = (k+k +1)n. N ; npp, = 2nFap
The corresponding numbers np4; and npp; in the monophase
sheme are:

npa1 = kn, N

nrpp1 = (2k+ kK + l)ﬂzN

so that:
ﬂpAp/npAl = (’C+ K + 1)/k

nerp/nrry = 2(k+ K +1)/(2k+ K +1)

The ratio f,,/f,1 between the sampling rates in the two circuits
is:

fio/for =k+KE +1

As an example, consider the case: n, = 2n, ; n' =n,. We have
then: k=2;k' =1;n, =4n, ; p=4and: npa,/nrar =2
i nppp/nrry = 4/3 5 fop/fi1 = 4 ie. a four time increase in
sampling rate with less than two time increase in hardware.

A comparison between polyphase convolvers and previously
proposed serial input serial output convolvers has not yet been
done. It can be noted that the latter do not generally offer the
possibility to operate with zero samples separation, this condition
requiring some sort of parallelism and redundancy, as seen in the
proposed polyphase schemes.

7. CONCLUSION

It has been shown how serial-input convolvers can be designed
on the basis of a polyphase architecture, using a method per-
mitting to assign arbitrarily the weight length n,, the samples
length n, and the number N of convolution terms, under the
condition of zero or arbitrarily assigned separation between suc-
cessive samples or between convolved. Two general schemes have
been found, one based on the use of distinct serial-parallel multi-
pliers, the other on multipliers which are partially shared among
different multiplications, thus affording a simpler structure. The
partition of such convolver schemes into modules in relation to an
easier design and VLSI implementation has also been discussed.
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