Some results about on-line computation of
functions.

Jean DUPRAT" Yvan HERREROS"

O

Jean-Michel MULLER™

*Laboratoire LIP-IMAG, Ecole Normale supérieure de Lyon
46 Allée d'ltalie
69364 Lyon Cedex 07

FRANCE
** CNRS, FRANCE

Abstract

We present some theoretical results about on-line algo-
rithms : upper and lower bounds for on-line delays, and
properties of functions computable in On Line mode. Then
we present the notion of sparse on line arithmetic, suitable
for manipulation of large numbers.

L Introduction

Data transmission in digit-serial fashion results in layout
improvement for a lot of circuits (signal processing circuits
for instance [17]), and in good performances in
communication and computation rates, since it enables a
digit-level pipelining. Such a transmission may begin with
the least significant bits (LSB) or with the most significant
bits (MSB) : algorithms for LSB transmission seem more
natural (when one performs an addition or a multiplication
using the classical "pencil and paper” methods, the digits of
the result are generated from the right to the left), but some
operations, like division, cannot be performed in LSB mode.

Here, we shall study some aspects of the digit pipelined MSB
mode, also called On Line mode in the literature ({11}, {7]. ...).
In such a mode, since carries propagate from the least signi-
ficant bits to the most significant ones, numbers must be in a
redundant number system which enables computations
without carries. Such systems have been studied for a long
time : in [1], Avizienis introduces the signed-digit systems,
where numbers are represented in radix r with digits taken
in the digit set{-a,-a+ 1, ..., 0, 1,2, ..., +a} (a <r-1) instead of
the conventional digit set {0, 1, 2, ..., r-1}. He shows that if 2a
2 r+l (it is impossible if r=2), then a very simple algorithm
enables fully parallel addition, without carry propagation.
In radix 2 (with a = 1), it is possible to perform parallel
additions, but with a slightly different algorithm. Signed-
digit systems verifying 2a > r areredundant because some
numbers have different possible representations. These
notations are not the only redundant number systems which
enable parallel additions : it is possible to represent the
integers in residue number systems or in carry-save form.
However, here, we consider only signed-digit represen-
tations.

112

In 1977, Ercegovac and Trivedi present an algorithm for on-
line division, based upon the non-restoring division recur-
rence, and an algorithm for on-line multiplication. Later
on, a lot of on-line algorithms have been published (an
overview is done in {6], recent algorithms may be found in
[3], [16], [5] and [8]. On-line systems are characterized by the
initial on-line delay (e.g. the number § such that p digits of
the result are deduced from p+8 digits of the input values,
where § may be either positive or negative} and the period
(e.g. the time T between two successive computations of
digits). The result of an operation with on-line delay & and
period 1 is obtained for p digits of precision in time (p + 8) 1.
It is possible to perform successively all on-line operations
in a digit-pipelined fashion : the global delay becomes the
sum of the individual on-line delays. For instance, in the
example of fig. 1 (we suppose that the periods are the same :
the different operations are synchronized with the slowest
one), the global delay is 28mult + 8add + Scos. therefore, p bits
of the result are computed in time (p + 23mult + Sadd + Scos)T-

Global delay =

sum of delays

A cos (ot + ¢)

Fig. 1 Digit-level pipelining
A "good" algorithm needs a compromise between delay and
period. In the first part of this paper, we are essentially
concerned with on-line delays : we present lower bounds of
on-line delays for functions with continuous derivatives
(these lower bounds are interesting because they are reached
by classical algorithms for arithmetic operations). For
monotone functions of one variable, we give a higher bound
of the lowest delay (it is only of theoretical interest, since the
"algorithm"” used by the proof has a huge period).

Duprat, Herreros and Muller

In the last part. we are concerned with very long precision
arithmetic. Our aim is to develop methodologies, algorithms
and architectures for integer and rational manipulations in
computer algebra. Such a field needs very large integers. For
instance, in [18], Villard solves exactly linear systems with
integer coefficients, and gives the example of a 704x704
system with coefficients bounded by 100, whose rational
solution is written with about 2500 radix-10-digit integers. If
we suppose that we use fixed-size operators (the size of these
operators may be large - a 1000-bit radix-2 on line
multiplier is realistic, see [10] - but is necessarily bounded),
a full on-line linear-time calculation of some functions, like
multiplication or division, becomes impossible. Since we
want to maintain at least partially the main advantage of
on-line arithmetic, which is the ability of digit-level
pipelining, we have to present a "degenerate” on-line mode,
which will be called sparse on-line arithmetic.

II. Theoretical results.

Il.a. General bounds for on-line delays.

In this part of the paper, we shall suppose that numbers are
written in a radix-r fixed-point signed digit notation [1], and
we shall work in the interval]-1,1[. The following definition
is the same as that of ercegovac and Trivedi [7].

Definition 1. Let f be a function from {-1,1] to [-1,1]. An
algorithm for computing f has delay 3 if it gives yp from x],
X2, ..., Xp+8, ¥1. ¥2, ... yp-1. where x = 0.x1x2x3... and
y = 0.y1y2y3... are represented in signed-digit form, and y =
f(x). A function f is computable in on-line mode if there
exists an algorithm of finite (which does not depend upon the
length of the operands) delay § which computes f.

Now, we shall define on-line delays of functions , instead of
delays of algorithms. One may define these on-line delays
as follows :

Definition 2. The absolute delay 3abs (f) of a function f is the
lowest value of 8 such that for any value of p, for
any x € [-1, 1}, the first p digits of a redundant
representation of f(x) may be deduced from the first p+3 digits
of any redundant representation of x.

But the redundancy of signed-digit notations leads to a
problem : let us imagine an algorithm which gives, for a
given value of p, the first p digits y;. y2, ... yp of a
representation of f(x) from the first p+d digits of a repre-
sentation of x. If we use this algorithm for computing the
first p+1 digits y'1. y'2, y'p+1 of flx) . we do not have
necessarily y; = y'j for any i. The following definition takes
this problem in account.

Definition 3. The practical delay 8pra (f) of a function fis
the lowest value of § such that yp may be deduced from x1,
X2, s Xp+8: Y1. Y2, -os ¥p-1. where x = 0.x1x2x3... and
y = 0.y1y2y3... are written in redundant form, andy = flx). It
is the lowest delay of an algorithm which computes f.

20f7

113

This definition seems more suitable for on-line studies than
definition 2, but unfortunately, it leads to a delay which
seems much more difficult to evaluate. Fortunately, theorem
2 shall prove that these two on-line delays are equal.

Theorem 1. A function computable in On Line mode is
continuous in]-1,1[.

Proof (given in radix 2).

Let us suppose that f is computable in onLine mode with
delay 8. Let us consider a numberx €]-1,1[, and y = {lx). We
shall show that f is continuous in the neighbourhood of x.
First of all, we must observe that there exists a binary
redundant representation of x, 0.x}x2x3..., without an
infinite sequence of 1 or 1 at its right (for instance, the non
redundant binary representation of x).

For a given integer p, let us consider the numbers :

A=0x1%x0x3..xp+51 111111...
B = 0.x1%2x3...Xp+511111111...

Since f is computable in On Line mode with delay 3, there
exist y1, y2. ..., yp such that for any s € [AB], y1, y2. ... yp are
the first digits of a redundant representation of f(s}.
Therefore, for any s e [AB], | {(s) -flx) | < 2-P+1 we deduce
from that :

Ve>0 Ja (pischosen such that 2°P*! <, o« =min {IB-xI,
1Ax1)) @ Ix-sl <o = Hx)-s)] <e.
Thus f is a continuous function and Theorem 1 is proved.

Theorem 1 is not true for an operator whose operands are in
conventional binary (nonredundant) form. Let us consider
the following example (the number O.ajagag... is in non
redundant form) :

f(0.a1a2a3...) = 0.a10a20a30...

This function is not continuous, but is obviously computable
MSB first.

Theorem 2.
Let f be computable in on-line mode. d3hs(f) is equal to
Spralf). In the following, we shall denote this value 8(f).

Proof.

We have obviously : §3hs(f) < 3pralf). Let us show that
dabsl(f) 2 pra (0 .

For the sake of simplicity, we prove this result in radix 2. Let
us note 3§ = 83phg (f). For any x, we can deduce the first p digits
of a redundant representation of y = f{x) from the first p+8
digits of any redundant representation of x. Let us propose
the following "algorithm” of delay & :

We suppose that we have already computed 0.y1y2 ... yp
from 0.x1X2 ... Xp4s. P+1 digits 0.y1'y2"... yp4+1' of a redundant
representation of y are deduced from 0.x1xs5 ... Xp+d+l - Let us
chose :

1if 0.y1y2 ...

yp < O.yr'y2' ... ypur'
Yp+1 = | 0if O.yyya ... yp =0.y1'y2' ... ypar'
Tif 0.y1y2 ... yp > 0.y1'y2' ... ypet'

We are going to prove that y1, y2, ..., yp+1 are the first p+1
digits of a redundant representation of y. In order to do that,
let us remark that :

L 0.y1Yy2'... yp+1' and 0.y1y2 ... yp are integer multi-
ples of 2°P-1,
it. 0y1y2...yp+1'1111.. <y <Oy1y2'.. yp+1'1111...
and 0y1y2 ...ypllll.. <y<Oyiy2 ... ypllll...
From { and i we deduce easily that 0.y1y2'"... yp+1'is equal
to one of the following values (see Fig. 2} :

*A=0yiy2..yp-2P- 2p-1
*B=0y1y2...yp-2P
+C=0y1y2 ... yp- 271
*D=0y1y2 .- ¥p
*E=0y1y2...yp+2P1

e F=0y1y2 ... Vp+ 2P
*G=0y1y2...yp+2P+2P1

~-If0.y1'y2'... yp+1'is equal to D, then the choice yp+1 = Olis
obviously convenient.

~1f0.y1'y2".. yp+1' is equalto Aor B or C, then
y<0.y1y2..yp+1'111... = 0y1'y2'.. yp+1'+2‘P'1.

therefore y < 0.y1y2 ... yp. thus the choice yp+1 = 1 is
convenient.

-If0.y1y2'...yp+l'is equal to E or F or G, then

y2 0.y1‘y2'...yp+1'm...= 0.y1Y2"..yp+1-2"P-1, therefore
y 2 0.y1y2 ... yp. thus the choice yp+1 = 1 is convenient.

0.yly2y3...yp1m.“ 0.yly2y3...yp

) |)

possible values of 0.y'ly2y3...y'p+1

0.yly2y3...ypl11l...

- .

yp+l=l—

yp+1=0 =l

Fig. 2 Different possible configurations.

114

Theorem 3.
If a function f computable in on-line mode has a continuous

&
derivative, then [logx I[\G[ai)](dx < 8(0.

Proof.

Let us suppose that we want to compute f with a delay
< [log r ll\gal)](|gxf—ﬂ in radix r, with the digit set {-a, -a+1, ...,
a-1, +a). Since 8§ is an integer, we have : 8 <logr (max | f' 1).
Thus max If'1 >0,

Since f ' is continuous there exists an interval I such than for
anyxe I, If ' x)1 > . Obviously, there exists x1, X2, X3,
Xp+d such that aand B belong to I, with :)

oo

® 0 = 0X1x9.. Xp50TAAAA. .. = 0.X]1X2X3.- Xp+3 - @ rd 2 ri
i=p+2

® B = 0x1x2.. xp+50aaaaa... = 0.X1X2X3.. Xp+§ + rd 2 ri
i=p+2

f(B) - flo) is equal to (B-a)f '(s), where s € [o,B], therefore :

H(B) - flo) | > |:(2ar 3(z r l):l
i=p+2

Since, for any y1,y2, --.. Yp. Yp+1 :

¥ =2a 2 ri.
i=p+2

0.y1y2...yp+12aaaa... -0.y1y2...yp+13adaa...= 2a 2 T
i=p+2

we deduce that the information "xp.+§+1 = 0" (e.g. "x € [o,B]) is
not sufficient in order to compute the digits y1. y2. ¥p. ¥p+1
of fix).

Theorem 4.
If f has a continuous derivative and is monotone, in radix 2 :

daffl 4 1
oy
We conjecture that in radix r, §(f) < [10g . I[\gai)](%H + 1.
Proof.
Let us note : &
- o |90 4 1
d [logz Ifgf‘l)](\dxl +

Suppose that f is an increasing function (if f is decreasing the
proof is similar). We build by induction a (probably very bad)
algorithm of delay d which computes y = {lx). Suppose now
that we have already calculated the first p-1 digits
0.y1y2y3...yp-1 of a redundant representation of f(x). The
digits 0.x1x9x3...Xp+d of x are known. Let us note :

A =1 (0.y1y2y3.. yp-10000000000...)

and let us define
1if 0.x1x9 ... Xp+d > A + 2-p-d

¥p = Tif 0.x1X3 ... Xpyg <A - 2P

0if A - 2P <0.x1X2 ... Xpsa S A + 2P

* If 0.Xx1X2X3..Xp+d > A+ 2-P-dthenx = 0.X1X2...Xp+d... 2
0.x1x9x3.. Xp+d1111111...>A + 2-p-d. 2-p-d = A, thus, since f
is increasing, the choice yp = 1 is convenient.

. IfO.x1x2x3A..xp+d <A-2Pdthenx= 0x1x2.. Xp+d..- <
0.X1X2X3.. Xp+d111111... <A-2Pd 4 2P-d = A thus, since fis
increasing, the choice yp = 1 is convenient.

eIfA-2Pd < 0.x1%2X3.. Xp+d SA+ 2-P-d then
A-2Pd+l <x <A+ 2PdH thusfla- 2-Pd+]) <fix) <flA+
2—p—d+1)_

Since f has a continuous derivative :

fla - 2-P-d+1) = fiA) - o D-d+lfvg), se [A-2Pd+] Al
A+ 2P-d+l) - a) + 2 P-d+l), te A A+ o-p-d+l),

Therefore :
fla) - 2°P-d+1 £ (s) c y < f(A) + 2°P-d+1 £ (p),
sela-2P0+] Al te(a,A+2P-dH])

Therefore :
o £ p_ £
f(A) —2P— __<y< f(A)+ 2P ———07
B = 2P Saare] =¥ = T 2 R T
Therefore :
fla) - 2P <y<fA)+ 2P
Therefore :

0.y1y2y3..yp-1011111.. <y < 0.y1y2y3...yp-1011111...

Thus the choice yp = 0 is convenient.

It is worth noting that if f does not have a continuous
derivative, even if f is continuous, it may be impossible to
compute f in on-line mode. fix} = Vx is an example, since the
pth digit of the square root 0.00...01... (p-1 zeroes) of
x = 0.0000...01 (2p-1 zeroes) depends upon the 2pth digit of x.
However, if we use a floating point notation, Vx becomes
computable. Another example is the following Peano's
function :

f (0.x1%2X3X4%5...) = 0.X1X3X5X7x9... where the numbers are
written in binary non-redundant form.

That function is continuous, but has no derivative, and is
obviously not computable in on-line mode since the
knowledge of the result with accuracy 2°P needs the
knowledge of the input value with accuracy 2-2p,

Now, we shall study briefly the case of functions of 2
variables. The following results may be easily generalized
to functions of n variables.

115

Theorem 5.
Let fix,y) be a function of 2 variables computable in on-line
mode :

® Sabstl) = Sprall) = 5(0
® |f 3f/ox and of /9y exist and are continuous functions, then

ay
Proof.

® 5abs(f) = 3pralf) = 8() : the proof is exactly the same as in
theorem 2.
® | et us assume that df/dx and 9f/dy exist and are continuous

functions. For the sake of simplicity, we suppose that the
radix is 2 {in radix r, the proof is similar). We assume that we
want to compute f in on-line mode with a delay equal to

8< [logg Max q—ail + gim Since § is an integer, we have :
ox dy

of of
§< (]ogz Max (]ﬁ' + W“)
5l * 155
ay

Therefore 28 < Max { —
dax
Since 9f/dx and 9f/dy are continuous, there exist a domain J
= [A,B] X [C.D], A<B, C<D, such that for any (x.y) € J, (z.t) € J,
of of
a—x] (x,y) + 3y
[E,F] XIG,H], E<F, G<H, such that the signs of df/ox and of/dy
do not change in I. There exists X1, X2, ..., Xp+8: Y1, Y2 .- Yp+3
such that I o [o.B] X[y.1], with :

3(f) 2 |log; Max

ax

afl

(z,) > 28 and a domain I, J2 I I=

* @ =0x]1x9x3.. xp+5011111...
* B = 0x1x2x3.. xp+3011111...
e y=0.y1y2y3...yp+301111L...
*7=0.y1y2y3...yp+601111L...
of of
Let us note (Au) = (¥,7) if B;and T2 have the same sign in I,
and (t,y) if they have opposite signs.
f af .
B -1 () = B-a)ar (s1.t1) + (p.-k).ry (s2.t2), where :

a<s}, s2<P A<ty tgsu

Therefore : | £(.7) -f (o | > 2°P-8.28 = 2-P_ Thus the in-
formation "Xp+§+1 = Yp+8+1 = 0" is not sufficient in order to
compute Zp41.

Thus theorem 5 is proved.

I1.b. Application to common functions.

Now we apply the preceding analysis to the most common
mathematical functions. Lower bounds of on-line delays
obtained with the help of theorems 3 and 5 are tabulated in
Fig. 3.'Since we work in [-1,1], we have to consider two cases :

Duprat, Herreros and Muller

- Overflow is possible : the result obtained is not valid if
If®)1| (or | f(xy) |)is greater than 1, e.g. for addition.

- In order to avoid overflow, instead of computing f, we
compute f/K, where K is a power of the radix greater than the
maximal value of f in [-1,1). It leads to "artificial" lower on-
line delays, since, when f (x) (or f{x,y)) lies in [-1,1], K
"artificial” zeros are put in the beginning of the result.

An interesting remark is that for addition and multipli-
cation in radix r>2, these on-line delays are achieved (we
shall consider later the problem of radix 2 addition). Hence
the theoretical bounds presented here are realistic. The
following theorem shows that the delay of radix-2 addition
is 2.

Theorem 6. In radix 2, 3(+) = 2.

Proof. Since methods of delay 2 are known (see [10] for
instance), we have only to prove that 3(f) > 1. In order to do
that, suppose that we are able to perform on-line additions
with delay 1.

Let x and y be two elements of]-1,1[. Assume that we have
already computed. from p+1 digits (0.x1x2...xp+1 and
0.y1y2...yp+1) of x and y, the first p digits of a representation
of z = x+y, say 0.2122...2p. Let us define :

o o = 0.x1x2%3.. Xp+211111...
* B =0.x1x2x3.. xp+211111...
*v=0y1y2y3...yp+211111...
*1=0y1y2y3.. yp+211111...

x may be any element of [a.pl. and y may be any element of
[v.7]. therefore z may be any element of I} = [a+B,y+1]. Let us
suppose that the knowledge of the new digits xp+2 and yp+2
is sufficient in order to compute zp.1. The numbers which
may be written with 0.2122...zpzp+] as p+1 first digits are
those of the interval Iz = [0.21...zp+11111..., 0z1..2p41111..]
therefore, I2 must contain I3. Since the length of [} and I2
are equal (to 2°P), I3 must be equal to I}, thus 0.z]...2p+] must

be equal to %(a+[i+y+t) = 0.x1x2x3...Xp+2 + 0.y1y2y3..yp+2- It
is impossible if, for instance, xp42 =0 and yp4+2 = 1, since in
such a case 2P+2 (0.x1%2x3...xp+2 + 0.y1y2y3...yp+2) is an odd
integer while 2p+2(0.zlzz...2p2p+1] is necessarily even (its
binary representation is z)z3...zpzp+10).

Now, let us consider the particular case of division (and
reciprocation). We shall suppose that numbers treated here
are mantissas of redundant floating-point numbers. Such a
floating-point number, with mantissa m can be :
1
® Normalized if ;—slml<1
1
L4 - 2 <| <1
Quasi-normalized if Z<lm

1
® Pseudo-normalized if r—ps Iml <1, withp>3.

50f 7

116

At least, normalized and quasi-normalized cases have to be
considered. Practically, it is very difficult to ensure that a
redundant floating-point number is normalized (it is
straightforward in non-redundant notation), but the exami-
nation of the signs of its two most significant digits allows to
check ff it is quasi-normalized (and quasi-normalization of
a number may be performed easily in on-line
mode). Therefore, if the input data is non-redundant, we
have to consider the normalized case, else we have to
consider the quasi-normalized case. In [16], Lin and Sips
present a reciprocal algorithm whose delay is, for radix 2
numbers, 3 and 4 to 5 for normalized and quasi-normalized
inputs respectively; and for radix-r numbers, r24, 1 and 2 to
3 for normalized and quasi-normalized inputs. We deduce
from the result of Lin and Sips, and from the table of Fig. 3,
that for radix-r numbers (r24), the minimal delay of
reciprocation is 1 for normalized numbers, and 2 or 3 for
quasi-normalized numbers. This implies that the delay of
division for radix-r numbers (r24), is 2 for normalized
numbers, and 3 or 4 for quasi-normalized numbers.

f or fixy) |interval MIax £ l'logz Miaxlf 'I] [log, M?xlf |]
sin x [-1,1] 1 0 0

cos X [-1,1] sin 1 0 0

eX [-1,1] e 2 2

eX/4 (radix2) | -1, 1] e/4 0 0

X/ r>2) [1.1] e/r 0 0

In (x) [1/e,1] e 2 1#fr>2
X+y [-1.1] 2 1 1
x+y)/r -1,1] 2/r o))

Xy [-1.1] 2 1 1

1/x [1/r, 1] r 1 1
1/ na2) 2 2 2
1/(Px) (1/rP, 1) rP p p

x/1y {1/r.1] 1+r 2 2
x/t%y) /2,] 1412 3 3
x/(rPy) /P, 13} 1+1P p+l p+l

Vx EP W]0S®PZ] pa 1] [[p/2 —log; 2]

Fig. 3 Lower bounds of on-line delays for usual functions .
(for a function of 2 variables, |f’ | represents | 3f/dx | +
1 3f/oy 1).

III. Sparse on-line arithmetic.

In the preceding part, we have considered only theoretical
dependency relations. Now, in order to study practical
implementations of functions in high precision arithmetic,
we have to consider two kinds of functions : those
computable on-the-fly with fixed sizes operators, and the
other functions. Let us suppose that we want to perform
arbitrarily long precision arithmetic, and that we have
fixed-size operators. Some calculations, like addition,
remain obviously possible in linear time on-line mode.
However, a lot of computations, like multiplication or
division, become impossible in linear time. Our purpose is
to conserve, for these computations, the great advantage of
on-line arithmetic, e.g. , the digit-level pipelining. In order

Duprat, Herreros and Muller

to do that, we
arithmetic.

define the concept of sparse on-line

Ill.a. Functions not computable in linear time
with fixed-size operators.

Let us consider the problem of multiplying two large n-digit
integers. Since we have only a bounded-size multiplier, the
time complexity of multiplication is the same as with purely
sequential processes, e.g. the same as in multiprecision
software. In 1969, Cook and Aandera showed in [2] that this
n log n

complexity is lower-bounded by O (_(lzaﬁg—n-)r} Therefore,
our multiplication cannot be performed in linear time.
Since the same lower bound is true for division, the result is
the same. Practically, only some piecewise linear functions
like addition, maximum, average value, opposite. absolute
value, etc. appear to be computable in linear time.

IIl.Lb. Use of fixed-size operators :
line arithmetic.

sparse on-

We take as time unit value the delay between the introdu-
ction of two consecutive digits in the operator. At each time
unit, our operators give a "digit" value. Since some
operations cannot be performed at this frequency, some of
these digit values will have no sense and will not appear in
the final representation of the result. Such digits with no
sense will have a special representation, and will be called
holes.

Since our operands have no constant sizes, we have to
introduce an other kind of non numeric digit, called end of

number (eor) . A number ends with an eon symbol, and
sparse numbers contain "true” digits and holes.

Let us consider again the problem of multiplying large num-
bers. There are some ways to perform large multiplications
using small multipliers. If our operands are 2p-digit radix r
numbers :

A=0.aja2...a2p=A1+ rPAg,

with A] = 0.a]...ap and Ag = 0.ap+1..-a2p
B =0.bb2...bop=B1 + 'PB2,
with B} = 0.bj...bp and Bg = 0.bp+1...b2p

The product P = AB may be expressed as :

P =A1B] + (A1Bg + A2B1) r'P + AgBor 2P (1)
with such a decomposition, a 2p-digit product leads to 4 p-
digit products. There are better decompositions (the decom-
position of Karatsuba and Ofman [15] leads to 3 p-digit
products, Cook and Aandera [2] study similar decompo-
sitions), but for the sake of simplicity we assume that we use
decomposition (1). Let us assume that we have a pxp-digit on
line multiplier. Let us number (1) the digits of weigth 0 to
r-P+1 of A1B1, (2) the digits of weigth r"P to r"2P+1 of A1B].
(3) the digits of weigth P to r-2P+1 of A1B2, and so on, as
depicted in Fig. 4.

6 of 7

117

| I 2 I 1 |

AIBI L ! 1 i] |
A B, | | 31 4 [|
| r T 1 |

AZBI 1 1 3 | 6 l 1
A,B, | 1 1 7 I 8 1
I 1 f T T

] |] | |

1 | 1 | 1

1 I] 1 1

0 E 2 K -4
T T P T P r3p T P

Fig. 4 Diagram of the decomposition.

The multiplier starts with the product AjBj. The digits of (1)
are given in classical on-line mode. After that, during the
computation of (2), (3) and (4}, which are stored, we output
holes. During the computation of (5), we can output in on-line
mode the digits of weigths P to r-2P*1, and so on, as
depicted in Fig.5.

1 2 3 4 5 6 7 8
I—-III\\I—I/I——%—I

holes

Fig. 5 holes of the result.

If, instead of a pxp-digit multiplier we have a (p/2)x{(p/2) digit
multiplier, each of the products A1B1, A1B2, A2B] and A2B2
is decomposed as AB was decomposed previously, and we
obtain holes into the parts 1, 5, 7 and 8 of Fig. 5.

Conclusion.

We have given here some complexity results which allow to
determine exactly or to bound the on line delay of most
common arithmetic and elementary functions. It allows to
show that a lot of classical on-line operators presented in
the literature are optimal in delay (but not necessarily in
period). We have proposed a way to conserve, for large
numbers manipulations, the main advantage of on-line
arithmetic, which is the ability of digit-level pipelining, by
presenting sparse on-line arithmetic. Now, we have to
develop algorithms and operators especially designed for
sparse mode.

References.

[11 A. Avizienis, Signed-digit number representations for
fast parallel arithmetic , IRE Transactions on electronic
computers, 10, pp. 389-400, 1961.

[2] S.A. Cook and $.0. Aandera, On the minimum compu-
tation time of functions , Trans. of the AMS, 142, 1969, pp.
291-314.

[8] M.D. Ercegovac et T. Lang, A division algorithm with
prediction of quotient digits , 7th Symposium on computer
arithmetic, Urbana, Illinois, June 1985.

[41 M.D. Ercegovac et T. Lang, On-the-fly conversion of
redundant into conventional representations , IEEE Trans.
on Computers, Vol. C-36, No 7, July 1987.

[51 M.D. Ercegovac et T. Lang, On-line scheme for compu-
ting rotation factors , 8th Symposium on computer
arithmetic, Como, Italy, May 1987, IEEE Publ. No
87CH2419-0.

[6] M.D. Ercegovac, On-line arithmetic : an overview ,
SPIE Vol. 495, Real time signal processing VII, pp 86-93,
1984.

[7] M.D. Ercegovac et K.S. Trivedi, On line algorithms for
division and multiplication . IEEE Trans. on Computers,
Vol. C-26 No 7, pp 681-687, July 1977.

[8] M.D. Ercegovac et P.K.G. Tu, A radix-4 on-line division
algorithm , 8th Symposium on computer arithmetic, Como,
Italy, May 1987, IEEE Publ. No 87CH2419-0.

[91 AL. Grnarov et M.D. Ercegovac, On the performance of
on-line arithmetic , Proc. 1980 Intern. Conference on
parallel processing, IEEE Publ. No 80CH1569-3, pp 55-62,
Aug.1980.

[10] A. Guyot, Y. Herreros and J.M. Muller, JANUS, an On-
line Multiplier/divider for manipulating large numbers , 9th
Symposium on Computer Arithmetic, Santa Monica, Sept.
1989.

(11] M.J. Irwin, An arithmetic unit for Online computa-
tion, PhD thesis, tech. report UIUCDCS-R-77-873. Dept. of
Computer science, university of Illinois, Champaign-ur-
bana, IL 61801, May 1977.

[12] M.J. Irwin, A pipelined processing unit for on-line
division , Proc. 5th symposium on Computer architecture,
IEEE Publ. No 78CH1284-9C, pp 24-30, April 1978.

[13] M.J. Irwin et RM. Owens, On-line algorithms for the
design of pipeline architectures, 6th symposium on
Computer Architecture , Philadelphia, PA, April 1979,

[14] M.J. Irwin et R M. Owens, Digit-pipelined arithmetic as
illustrated by the paste-up system : a tutorial , IEEE
Computer, pp 61-73, April 1987.

[15] A. Karatsuba and Y. Ofman, Multiplication of large
numbers on an automata , Dokl. Akad. Nauk. SSSR, 145,
1962, pp. 293-294 (in russian).

[16] H. Lin and H.J. Sips, A novel floating-point on-line
division algorithm . 8th Symposium on computer arithme-
tic, Como, Italy, May 1987, IEEE Publ. No 87CH2419-0.

[17) G. Privat, Architectures specialisées de circuits VLSI
pour le traitement du signal , Ph.D. dissertation, Ecole
Nationale Supérieure des Télécommunications, France,
1986.

[18] G. Villard, Calcul formel et parallélisme, résolution de
systémes linéaires . Ph. D. dissertation, TIM3-INPG. Gre-
noble, France, Dec. 1988.

118

