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ABSTRACT

Decoding in Residue Number System (RNS) based architectures
can be a bottleneck. A high speed and flexible modulo decoder is an
essential computational element to maintain the advantages of RNS.
In this paper, a fast and flexible modulo decoder, based on the
Chinese Remainder Theorem (CRT), is presented. It decodes a set of
residues into its equivalent representation in either unsigned magni-
tude or 2’s complement binary number system. Two different archi-
tectures are analyzed; the first one is based on using Carry Save
Adders(CSA), while, the other is based on utilizing a modified struc-
ture of Carry Save Adders(MCSA). Both architectures are modular
and are based on simple cells which leads to efficient VLSI implemen-
tation. The proposed decoder is fast, it has a time complexity of
O(logN)).

1. Introduction

Recently, RNS has received increased attention due to its abil-
ity to support high-speed concurrent arithmetic {1-3]. Applications
such as fast fourier transform, digital filtering, and image processing
utilize the efficiencies of RNS arithmetics in addition and multiplica-
tion, they do not require the difficult RNS operations such as divi-
sion and magnitude comparison. RNS has been employed efficiently
in the implementation of several special purpose processors such as
digital signal processors[4].

Since special purpose processors are associated with general pur-
pose computers, binary-to-residue and residue-to-binary conversions
become inherently important and the conversion process should not
offset the speed gain in RNS operations. While the binary-to-residue
conversion does not pose a serious threat to the speed gain in RNS
operations, the residue-to-binary conversion can be a bottleneck. It is
mainly carried out employing the Chinese Remainder Theorem
(CRT) [5,6]. Several implementations of the residue decoder have
been reported [7-12]. In {12], the proposed residue decoders are basi-
cally based on biased addition, and take advantage of the fast addi-
tion speed of CSA[13]. But, the conversion output is not in 2’s com-
plement form. The implementation in [11] requires that one of the
moduli must be a power of two; therefore, it may be limited in
application. The residue decoders in [7,8] are based on using three
moduli in the form (2" —1, 2*, 2*+1). Due to the limitation imposed
on the number of moduli and the choice of them, it is limited in
application. In [10], the residue decoder is based on the base exten-
sion technique, it uses modular look-up tables in its implementation.
Since two moduli are fed into a look-up table, the choice of moduli
must not be large for the implementation to be feasible. In addition,
it does not support residue to 2’s complement binary number system
conversion. Although look-up tables are used in this scheme, its time
complexity is (N?). In [14,15], the scheme used has a time complex-
ity of 8((logN)?). In [9], a scheme of 8(logNP) (where P is the
number of bits) is used to support only unsigned magnitude binary
numbers.
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In this paper, a 6(logn) residue decoder capable of decoding a
set of residues to its equivalent representation in unsigned magnitude
or 2’s complement binary number system is introduced. Two different
architectures using CSAs based on[16] and MCSA(17] are imple-
mented. In the following section, the RNS theory is reviewed. Sec-
tion 3 discusses how this fast and flexible residue decoder can be
implemented. Section 4 evaluates the speed performance of this resi-
due decoder.

2. Residue Number System

In RNS, an integer , X, can be represented by N-tuple of resi-
due digits,

X =(r1, roeecreiinnene , TN)
where r; = IXI m; With respect to a set of N moduli
{my, mo,...oo.o.o..L , my}. In order to have a unique residue represen-

tation, the moduli must be pairwise relatively prime, that is,

GCD(m;, m;) =1, for ¢ # j

then it is shown that there is a unique representation for each

number in the range of 0 < X < [[m; = M where N is the number
ey

of moduli.

The arithmetic operation on two integers A and B is equivalent
to the arithmetic operation on its residue representation, that is,

hoob= (kbbb bbb L)

where ’-’ can be addition, subtraction, or multiplication. Therefore, it
is desired to convert binary arithmetic on large integers to residue
arithmetic on small residue digits in which the operations can be
parallelly executed, and there is no carry chain between residue digits.

For applications in digital signal processing, it is helpful to
define a dynamic range for the RNS with positive and negative
M-1 M-1

integers. The dynamic range is defined as |— T for M
odd and as [—%, %—1] for M even, or more specifically, for M
odd,
z iz < -M—z_l
X =
Z-M i Z> %
and for M even,
Z if Z < %
X =
Z-M  ifZ> —21‘1

where Z is an integer within the legitimate range, 0 < Z < M. Any
integer, X, within the dynamic range can be represented by N residue
digits.



The conversion from RNS to weighted binary number system is
done by using the CRT, which states that

FIRES T o
j=l ! m; ™

where

N
M
M= g e
;I-Il e
Although the CRT provides a direct, fast, and simple conversion for-
mula, the lack of large and fast modulo M adder has held back this
approach.

3. The Residue Decoder

The residue decoder based on the CRT can be implemented by
a modulo M adder tree. The modulo M adders at each level are used
to correct the partial sum so that it is within the legitimate range.
Since modulo M adder is very slow, the possible implementation may
pose an overhead to the overall speed performance of an RNS proces-
sor. In addition, the CRT only converts residues to its binary
representation in the legitimate range but not in the dynamic range.
Therefore, conversion to 2’s complement binary number system
requires a final correction.

In order to implement a high speed residue decoder that can
perform conversion to both unsigned magnitude and 2’s complement
binary number system, the following solutions are proposed:

1)  The number of modulo M adders or binary adders should be
reduced to a minimum.

2)  CSAs or MCSAs can be used wherever multi-operand addition
is required due to its high addition speed.

3)  Correction can be performed only at the last stage, and it sup-
ports conversion to both unsigned magnitude and 2’s comple-
ment binary number system.

For ease of residue decoder design, it is partitioned into 4 stages as

shown in Figure 1. The input to the residue decoder are the residues

and a control line, C, which determines the output to be in unsigned
magnitude or 2's complement number system.
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Figure 1. Block Diagram of the Residue Decoder

3.1. Partial Sum Generator

The inputs to this stage are the N residues. The main function
of this stage is to compute partial sums, ¢;'s, where

"
= m | =

M

m,

Since m; is usually small, the value of ¢; can be obtained by access-
ing a lookup table with a small address space. Hence, r; will serve as
ROM address input, and ¢; will be obtained from ROM output.

In most cases, it is better to reduce the number of partial
sums, (f’s), in order to reduce the complexity at lower stages and
hence increase the residue decoder’s speed as a whole. Since a
modulus m; can be represented by |logom, |-bit binary number, the
7 th residue,

fotom -1
=Y 2%
=0
where bf ¢ {0, 1}. By substituting r; in eq. (1), we can rewrite the
CRT as follows:

N [l“’mll_l 1 -
|X|u= b)) X || 20 e [ ue @)
gl k=0 m;

Hence, if we have a set of 8 moduli {2,3,5,7,11,13,17,23} with residues
{r1,ro,rar4 576 r7,rs}, respectively, only 4 ROMs with 7-bit address
input are needed to implement this level, and modulus summation of
4 operands instead of 8 is needed, where

po | M| M| Ml
Tl 2|, 33 s 5|5 |s fa
o | Ml M
SR 2 2 LTI IFVTN A O
M| re 2 M1 P
tg=| —|—| + 3 == 2
13|13 |, 217 |17 |, N
M1 k7, M| Ts
ty=| 2L 2+ 2|2
=217 |17 |, 23 [ 23 |0

3.2. Partial Sum Adder

By far the modulo M summation of partial sums, (t;’s,) poses
the biggest challenge to the implementation of the residue decoder
due to the slow computational speed of the modulo M adder. This
stage can be implemented using two different approaches.

§3.2.1. Implementation using CSA

A multilevel CSA tree consists of N-2 CSAs and a carry propagate
adder, CPA[13], are used to reduce A partial sums, t’s, to a sum, S.
Let [ be the number of levels on a CSA tree, and 6(/) be the max-
imum number of operands that can be processed with a {-level CSA
tree. We can compute § by the recursive formula provided by
Avizienis(18],

* 3 + (6(I—1)) mod 2

o(r) = V(lz—l)

for I =2,3,....., and nitially 6(1) =3 3)

A CSA tree for adding 6 operands is shown in Figure 2. CPA is a
(m-1)-bit two-level carry lookhead adder, CLA[13] where:

m = [logz(MA)]

Hence, the output S is an m-bit number that is passed to the next
stage. The complexity of the scheme is determined by Theorem 1.

Theorem 1: The addstion of N numbers using CSAs can be per-
formed in 8(logN) stepa.
Proof: The number of levels in a CSA tree is determined by:

«n=lﬂ%ﬂ.ts+qunmuz

To determine the number of levels required to add N numbers let us
consider the following two cases:
(i) #({—1) is even , then:



" +— "meeans that output
is shifted left with 2ero

entering from the right

Figure 2. An Example for Partial Sum Adder for

A=6.
8(i—1 1
I L= J= Lo-1) (@)
6(!1—1) mod2 =0 (5)

Substituting in (3) using (4) and (5), we have:
o) = So0-1) (®)

Since f(1) = 3 , we can substitute in (6) to get successive values for
(1) as follows:

_ 3.
6(2) = 7 g

903) = (3) 3
o4) = (3) *3

) = (3)*

T g -1
=3 3
2.
=(3) *2
6(1) represents the number of operands that can be added using a

CSA tree that has [ levels. Suppose that the number of operands is
N then:

N = (%) *9
Taking the logarithm of both sides we have:
logN =1 ‘log%

Then: = L

*logN
log?

We can find constants C; > 0, Cy > 0, and Ny > 0, such that for all

N > N the following is true:

1

C, lgN < 3 *logN < Cp logN 7)
log—
2
Then
CilogN <l <CylogN YN >N, (8)

Possible values for C,, C; and N, are 1,2,1. Equation (8) means
that [ = 0(logN).
(i1) ({—1) is odd , then:

3+ li(’;_l) j= Lou-n-15 (9)

0(1—1) mod2 = 1 (10)
Substituting in (3) using (9) and (10), we get:
3 1

o(l)=—(l-1) — — 11

0 = So-1) - 1 an)

Since 6(1) = 3 , we can substitute in (11) to get successive values for
(1) as follow:

6(2) = %*3—%

2 1
o3) = (%);34%)2*3—;3 o
04) = (5) *3-(3) *3-(3) *3-5
: -1 -2 -3
9(’)=(%) *3—((%) +(%) +..+ 1)¥0.5
3 \i—
C (B
= (3) 205
—1
2
SR

Suppose that t’:e number of operands is N then:

N = —;—(%) +1
Using the same analytical method used for the case of even §(I—1) we
can find constants €, Cy, and Ny20, such that for all N>N, the fol-
lowing is true:

CylogN < —

*logN < CglogN

]ogE-
From the previous analysis in both cases f and #, N numbers can be
added using CSAs in 8(logN). O

§3.2.2. Implementation using MCSA

The MCSA is based on the idea of representing a number as a
Carry and a Sum similar to CSA. It can be used in the modulo addi-
tion of two numbers to obtain a scheme that has a constant speed
which does not depend on the number of bits. Basically CSA depends
on the idea of not completing the addition process at a certain stage,
but postpone it to the final stage. In the intermediate stages numbers
are represented as Sum and Carry to avoid the complete addition
process. The MCSA is used to add two numbers A and B in modulo
m. Figure 3.4 shows that A is represented as a pair of numbers
(As , Ag), B is represented as (Bs , B¢), and the output C is
represented as (Cs , C¢). Each number is represented as a group of
Sum bits and Carry bits. There is no unique representation for Ag
and Ag. The condition that need to be satisfied is:

A5+ Ac | = 4]

One possible representation is:

As = A|,,. Ag =0

(A,A)(B,B)
s’ ¢ s’ ¢c

Figure 3.a. A Modified CSA (MCSA)



We need to add four numbers (As , A¢ ,Bs ,B¢), which needs two
steps of CSA. After the addition process we need to detect if —M or
2#(—M) is required to adjust the result. The adjusting process takes
at most three steps. The proposed algorithm for modulo m addition
of two numbers can be described as follow:

Algorithm modulo_add ( A , B, Result)
Input: Two variables A and B in modulo m, A is represented as

Ag and Ac. B is represented as Bs and Bc. All variables are n bit
numbers.

Output: Variable Result represented as Resultg and Results. The
relation between A, B, and Result is: Result = TA + B[,,,.
Procedure:
begin
Do in parallel
begin

Call Sum(temp, , As , Ac , Bs)
Call Carry(temp, , As , Ac , Bs)
end
Do in parallel
begin
Call Carry(tempy , temp, , temp, , Bc)
Call Carry(temp, , temp, , temp, , Bc)
end
Case ( temp sub 2 [n+1] + temp sub 4 [n+1] ) of
0: Do in parallel
begin
Results = temps
Resulty == temp,
end
exit
1: Do in parallel
begin
Call Sum(tempg , tempsy , temp, , (2*—m))
Call Carry(tempy , tempg , temp, , (2" —m))
end
2: Do tn parallel
begin
Call Sum(tempg , tempy , temp, , 2%(2"—m))
Call Carry(temps , tempg , temp, , 2*(2"—m))
end
end case
Case ( temp sub 6 [n+1] ) of
0: Do in parallel
begin
Results := tempg
Result; := tempy
end
exst
1: Do in parallel
begin
Call Sum(temp, , tempg , tempg , (2°—m))

Call Carry(tempg , tempg , tempg , (2% —m))
end

end case
Case ( temp sub 8 [n+1] ) of
0: Do in parallel
begin
Results
Resulty =
end
1: Do in parallel
begin
Call Sum(temp, , tempy , tempg , (2" ~M))
Call Carry(temp,q , temp; , tempg , (2*—M))
end
Do in parallel

temp,
tempg
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begin
Results := temp,y
Resulty := temp o
end
end case
end.

Sum(A , B, C,D)
begin
g)a tn parallel (1<i<n )
Ali] :=(B[{]AC[¢]) V (B[{]AD [{]) V(C[{]AD [4])

end

Do in parallel (1<i<n)
Ali+l] :==B[i| ® C[i] ® D[i]
end

An implementation of the algorithm is shown in Figure 3.5.

Aln] Aln]B[n]
s ¢ s

Al2] Al218[2] Al1] Al1]B]1]
s ¢ 5 s o s

F& P&

22 1) Hus
0
2t
2( 2”‘ M) LU

Fa

[ [

0 Result[n] Resultin] Result{1] Resunt[1]
s 3 s <

Figure 3b. Different Stages of the MCSA.

Theorem 2: The modulo adder scheme for adding two n-bit numbers
tn modulo m has an asymptotic time complezity 6(1).

Proof: To prove that the number of steps is constant (five) we need
to prove that the last carry is equal to zero in five or less steps.
Induction is used to prove the correctness of the theorem on the
number of bits n.

[1] Basis step: for n = 0, means that we do not add any numbers
and in this case the required number of steps is zero.

[2] Induction hypothesis: assume for a fixed arbitrary n>0 that
that the maximum number of steps is five.

{3]  Induction step: for numbers with n +1 bits let:

n=tempg[n +1] + temp[n+2].

Then we have the following cases:

(a) #=0: then the carry propagation stopped at bit n, and it
ends after five steps at most according to the induction
hypothesis.

(b) n=1: then the correction is 2**'—m in step 3. Since m > 2"
then 2**'—m < 2", which means that (2**'—m)[n] = 0. The
worst case we get to have tempg[n+1] and temp,[n +2] to be



equal one. This means that tempgin+1]=0 and
tempg[n +2] = 1, then tempg[n+2] = 0. In this case the correc-
tion is done in two steps (step3 and step 4).

(c) n=2: then the correction is 2#(2"*'—m) in step 3. The
worst case we get to have tempgn+1], temp,n+2], and
2*(2"*'—-m) to be equal one. Then tempyn+1]=l,
tempe[n +1]=1 and 2"*'—M=0. At stepd temp;[n+1]=0 and
tempg[n +2]=1. At step5 tempg[n+1]=1 and temp 1o[n +2]=0.
In this case the correction is done in three steps (steps3—5). O

Since the adder has a fixed number of stages which does not depend
on the operands’ length, it can be used in the implementation of a
pipelined multi-operand modulo addition scheme(19].

Example: As an example, the modulo addition of A = 1272 and
B = 450 for m = 2050 is shown in Figure 3.c. There is no unique
representation for A and B. One valid representation is shown in
Figure 3.c. Figure3.c shows the detailed modulo addition operation
for this example. In stepl we get temp,[13] = 1, and in step2 we get
temp ,(13] = 1, which means that at step3 we have to add 2(2"—M).
At step3 we get tempg[13] = 1, which means that at step4 we have to
add 2" —M. At steps we get tempg[13] = O, which means that the

addition process stops at step4. The result of step4 is the final
result. O

Initial: Ag= 101111110111
Ac= 110011101101
Bs= 111100010101
Be= 101010110011
M=2050 , N=12
Step 1. Ag= 101111110111
A= 110011101101

Bs= 111100010101

temp,: 100000001111
temp,:=[J1 11111101010

Step 2. tempy= 100000001111
temp,= 111111101010

Bg= 111100010101

tempg= 110101010110
tempzflo10101010110

Step 3. tempg= 110101010110
temps= 010101010110
2(2"-M)= 111111111100
tempg= 011111111100
tempszmmlmomnoo

Step 4. temp5= 011111111100
tempgz 101010101100
2"-M=o1t111111110

tempy= 101010101110
tempﬂ:@l 11111111000

Rasulls= 1010710101770
Rasull,= 111171111000

Figure 3.c. A detailed Example for the Modulo Addition.

Theorem 3: Adding n numbers (y, , y,, - - -
equivalent to :

(1]

, ¥ ) tn modulo M is

Adding (y,,y2) modulo M ,.(w%,%4),..., and
(Un—1, ¥a) BiVes Y12, - - ., Y(aci)a-

(2]  Step [1] is repeated on (¥4, ¥34) serrs (Y(nsinmt) » Y(mmt}n)-

[3] Step [2] is repeated for [ logN 1— 2 times to obtain one final

output represented as a sum and carry.
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Proof: To add two numbers a

lowing cases:
(i) e<Mand b <M thena

and b in modulo M we have the fol-

Ia ’Mand b= |b |M,then:

a+b |y= ay + by IM (12)
(i) e6>M and b <M then b = \b |Mand a =M + z, then:
|a+b |M= |M+z+b = [z+b (13)
Since z <M and b <M, then from (12) and (13):
a + b |M = |ay + by IM

(iii)
(iv)

e >M and b <M like case (ii).
a>M and b >M then ¢ = M+z and b = M+y, then:

a+b |M= |M+z+M+y l.,= T4y I" |¢M+bu Ll

o+ b |, (14)

From the previous four cases:

a+b ‘M

Since addition is associative then:
= (g1 +F 9x) + (yiﬂ oo Yn) L
F) 2

V4ot Ya + |ya+1 + 4y, (using 14).

z z
We can further expand this expression using the same method to get
the addition process in the right hand side in terms of only two

operands added in modulo M. [

Theorem 3 means that adding » numbers in modulo M can be
performed using a binary tree consists of units that are capable of
adding only two numbers in modulo M. MCSAs are used as those
building blocks to perform the addition process. Since MCSA requires
that inputs be represented in the form of sum and carry, then this
form should be enforced at all levels. The form will be enforced
automatically for levels > 2, because the outputs of the previous lev-
els are in the correct form. For first level we have the following:

Yis=%,Yic=0 Vigign
For the last stage the output is in the form of sum and carry which is
exactly the same form as CSAs. Figure 3.d. shows the binary tree
required to add n numbers in modulo M.

(y,0 ,0) {y,0)(y,0)
Y )(uz (us )(?‘

(y, 00y, 0)(y, 0y, 0)
p-3 n-2 p-t N

Stege 3

Stage logn]

(Result , Result)
S c

Figure 3.d. Partial Sum Adder Implementation
Using MCSAs



3.3. Range Determinator

This stage consists of three levels namely ROM, Magnitude
Comparator(MC), and Bit Corrector(BC). The major function of this
stage is to determine S range so that appropriate value can be sub-
tracted from S to obtain the desired result. In order to accomplish
this, 2 sets of values as shown in Table I have to be compared. For
simplicity, we explain the first set then the second set.

Since the input to this stage, S, is a large binary number, it is
partitioned into groups of adjacent bits. For example, if S is a 24-bit
number, we can partition S into 3 8-bit groups G,, G, and G,
where

G, =S7.00 G2=S1e.% and G = Sz3.16

Since each group is fed into a ROM module as an address input, the
number of bits in each group should be small so that small ROMs
that are fast and occupy small silicon area are used to implement this
level. However, the number of groups, g, should be kept small as
possible since the complexity of MC cells is a function of the number
of ROM modules, g. Hence, there are tradeoffs in choosing ¢ and the
number of bits in each group.

As shown in Figure 4, the input to ith ROM module of the the
first set of ROMs is G;, and the outputs are B,'-.’s and C}’s. The func-
tion of this ROM module is depicted as follows:

0o iG< [jM—l].-

B} = . forj =1.A-1
1 if G; > []M—l];
Magnitude Compared
A Second Set
First Set
if M Odd if M Even
1 M-1 M1 M,
2 2
2 2M—1 SM-1 M _,
2 2
n—1 | (ne)M—-1 (2n-—i;)M—l (2n;3)M 1

Table I Values Compared by Multi-magnitude Comparators

[
i
------ oeee
i i 1
8 a1 Coant By a1 Cpan

BY a1
MC ol __ ... MC ___| mc MC
cell cell cell cell
MC k. ' 1
A My __ 12 ey .
1
Bc ! ol BC BC ! BC !
A-1 m 2 1

Figure4. Implementation of the first part of Range
Determinator Stage
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0 if Gi # [kM—l),-
1 if G; = [kM—l];

2
I

fork =2.A-1

Clearly, these ROM modules serve as a partial multi-magnitude
comparator that compares the input pattern S to the first set of
values as shown in Table / and produce g*(2A-3) outputs that are to
be fed into the MC level.

The MC level consists of (A-1) MC cells. This level takes the
input from ROM level and does further comparison so that a 2-level
multi-magnitude comparator is formed. The complexity of a MC cell
is a function of the number of ROM modules. If we have ¢ ROM
modules, then the Boolean equation for the /th MC cell is as follows:

MG, = Bf + Bf-\Cf + Bf~2CSCF™ +
+ BECPOPTICP ... P

+ BCFCF ... loAle (15)
Hence we have,
' 0 if S <IM
MC} = 1 IS > M forli=1,2,.... ,A—-1 (16)

Since S may be larger than several values compared, the out-
puts of several MC cells may be set to 1; therefore, the BC level is
used to ensure that only one of the outputs of the MC! cells is set to
one and also to indicate the appropriate range. In order to do so, A
identical BC! cells are needed, and their common Boolean equation is
as follows:

BC} = MCA+MCl_, form =1,2,..., A

where,
MC} =1and MC{ =0 (17)

Hence, the range of S is determined to be (m—1)M < § < mM if
BCl=1. Figure4 shows the implementation of the multi-
magnitude comparator that compares S with the first set of values
shown in Table I and its BC level.

Thus far, the range determination enables the S modulus M
operation to be performed by S—(m—1)M if BCy is set to one.
Therefore, only residue to unsigned magnitude number system
conversion is possible. However, for residue to 2’s complement
number system conversion, the second set of values, as shown in
Table I, has to be compared with S by another multi-magnitude
comparator which is done in the same way as previously explained.
Figure 5 shows the input to the ith ROM module of the second set of
ROMs is G;, and the outputs are D,'-.’s and E}’s. The function of this
ROM module is clearly depicted as follows:

For M odd,
0 ifG< [ (2/-M-1 ],-
Dj = for j = 1.A—1(18)
1 iG> [ 2’“‘2M_1].-
o G« [ 2k—12M—1 ]'_
Ef = for k = 2.A—1(19)
L= [ (2k=1)m 1 ]

and for M even,



0 #G< [12’—;‘)’”—1 ;

Di= for j = 1..A—1(20)
1 iG> [L‘;M—l];
0 if G # [(—2"—;—1)—‘"-1 ;

Ef = for k = 2..A—1(21)
I G = [12_".‘2_1M—1 ;
fori=1,2,.... , 9

The MC level of this part is exactly the same as previously proposed,
that is, it consists of A MC? cells, and each MC? cell has the same
Boolean equation as follows:

MC? = Df + DF'Ef + DF2EFEF ™" + ...
+ D2EFEFTES ... E?
+ D'EfESF™........ EPE?

Since different set of values is compared with S, we have for M odd,

o its < (21—12)M—1
MGE =
' 1 irs > Z=UM-L
2
and for M even,
0 IS < 2"21 M_,
MC? = _
1 if § > M_l
2
for=1,2,......... ,A—1

The BC level for this part of the design consists of A BC? cells.
Each of these cells has a control line C. If C is equal to zero, then all
the output lines of BC level will be equal to one and residue to
unsigned magnitude number system conversion will be performed;
otherwise, only one of the BC level output lines will be equal to one,
and thus residue to 2’s complement number system conversion will be
performed. The Boolean equation for a BC cell is as follows:

BC2 = C-MC2-MC2_, form =1,2,.. LA

where,
MCE =1and MC} =0

Therefore, the

( T range of S is
2m —3)M +1

<5s < (em—1)M+1
(2m-1)M
2

determined to be

for M odd, and

<S5 < for M even if BC,2 = 1 (Note that the

lower bound is equal to zero when m=1). Figure 5 shows the imple-
mentation of this part of the design.

(2m-3)M
2

3.4. Final Corrector

This stage consists of A tristate multiplexers and a carry look-
head adder. The BC' input lines will be used to enable one of the
tristate multiplexers while BC? input lines will be used as the selec-
tors of the multiplexers. If BC}' is set, then (1 —1)M < § < M. The
lower bound (f—1)M will be subtracted from S if conversion to
uns.igned magnitude number system is desired, or S is less than
% for M odd or 12'—;1& for M even; otherwise, the
upper bound, fM, will be subtracted from S. The implementation of
this stage is shown in Figure 6. The CLA is used to add the 2’s com-
plement of the value to be subtracted to S and output the desired
result.
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Figure 6. Implementation of Final Corrector Stage

4. Performance Evaluation

[1]  The partial sum generator is implemented using small ROMs, If
the number of residues is N and each residue is represented in
P bits, then it is required to use N ROMs. Each ROM is
storing values bounded by M, then the size of each ROM is
2P * [logM] The total area required for this stage is:
N * 2F # [logM] Since ROMs have a constant time delay (P
is a small number) which does not depend on N, then the delay
of this stage is 6(1).

[2]  The partial sum adder is implemented in two different ways:

(a) Using CSAs: The complexity of the scheme is determined by
Theorem 1. Since each CSA has a constant time delay, then
the total time required to add N numbers in modulo M is
8(logN).

(b) Using MCSAs: The number of levels required to perform the
addition of N numbers using a binary tree of MCSAs is
[ 1ogN1 as it is shown in Theorem 3. Since at each level the
required time is constant (MCSA has a constant time), then the
total time required for this step using MCSAs is 8(logn ).

(3] The range determinator consists of three different
levels(Figure 4). The first level consists of ¢ ROMs. The second
level is the MC cells, which are combinational circuits that can



(4]

be represented with a two level switching function. Finally the
last level is a two stage combinational circuit. The Three levels
have a constant time delay that does not depend on N. The
previous analysis shows that the range determinator has a time
delay of 6(1).

The Final corrector consists of two stages. In the first stage we
have A tristate multiplexers which have a constant delay
equivalent to two serial NAND gates. The second stage is a
CLA which has a constant delay and for number of bits less
than 64 the delay is equivalent to the delay of 12 serial NAND
gates as shown in{13]|. For number of bits larger than this we
can still obtain a constant delay CLA. Then the final corrector
has a delay of #(1).

From cases [1]-[4] we see that all stages except the partial sum adder
has a constant time delay which does not depend on the number of
residues N. Only the second stage requires §(logN) steps.

5. Conclusions

The residue decoder introduced in this paper has a total delay

of [logN 1 In addition, it has several advantages as listed below:

1) The design is quite modular and consists of simple cells such as
small ROMs and MC cells. This makes the implementation of
the whole residue decoder in a single chip is possible.

2) It doesn’t have any limitation on the moduli used.

3) It is flexible since it can convert residues to either unsigned
magnitude or 2’s complement number system, and it is con-
trolled by only a control line, C. This means that it can be
applied to wider area.

4) It is fast compared with most schemes proposed before since it
has a time complexity of {logN).

5) It can be easily pipelined without any modifications.
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