RADIX-4 SQUARE ROOT WITHOUT INITIAL PLA

Milo$ D. Ercegovac and Tomas Lang

Computer Science Department
School of Engineering and Applied Science
University of California, Los Angeles

Abstract

A systematic derivation of a radix-4 square root algorithm
using redundancy in the partial residuals and the result is presented.
Unlike other similar schemes the algorithm does not use a table-
lookup or PLA for the initial step. The scheme can be integrated
with division. It also performs on-the-fly conversion and rounding
of the result, thus eliminating a carry-propagate step to obtain the
final result. The selection function uses 4 bits of the result and 8 bits
of the estimate of the partial residual.

1. Introduction

Several implementations of radix-4 square root have been
presented in the literature {VINE65, GOSL87, FAND87, ZURAS87].
In all these cases a table-lookup or a special PLA is included for the
determination of the first few bits of the result, while another PLA
implements the result-digit selection for the remaining radix-4 di-
gits. In this paper we show that this initial PLA is not necessary,
resulting in a simpler implementation. As in the other designs, the
implementation can be combined with division: the result digit
selection function and the recurrence are identical in all steps.

The operand and result are in floating-point representation.
To permit the computation of the exponent of the result, the ex-
ponent of the operand has to be even. To accomplish this, the
mantissa of the operand is multiplied by 1/2 when its exponent is
odd. Consequently, the operand mantissa is in the range [1/4,1). The
mantissa of the result is then in the range [1/2,1).

To obtain a fast implementation, as done in [GOSL87,
FAND87, ZURABS7], carry-save addition is used and the result-digit
selection depends on low-precision estimates of the residual and of
the partial result. This requires that the result digit be from a redun-
dant digit-set. As the other referenced implementations we use the
set {-2,-1,0,1,2} to simplify the multiple formation required by the
recurrence.

The signed-digit result is converted on-the-fly to conven-
tional representation. Morcover, during this conversion on-the-fly
rounding is performed [ERCES8].

2. Recurrence and Square Root Step

The algorithm is based on a continued-sum recurrence. We
now develop the digit-recurrence for the algorithm and show the im-
plementation of the corresponding iteration step.

162

2.1 Recurrence

Each iteration of the recurrence produces one digit of the
result, most-significant digit first. Let S [] be the value of the result
after j iterations, that is

SU1=Es4"

i=1

(o))

L .
The final result is then s =S[n]= 3 s5;4™". Define an error function
i=1

€ so that its value after j steps is

eljl=x"2-5[j] &)
where 1/4 < x < 1 is the operand.

To have a correct result this error has to be bounded. To
use a redundant representation of the result, we allow a positive or
negative error such that

—47 <glj]< 47 3)

) If a positive final remainder is required, a restoration step is
included. We now transform (2) to eliminate the square root opera-
tion:
U —2aTS[j1+ S P<x <4 + 247 S]+ S P
Subtracting S [} J? produces

47U — 2475 [j1<x - S[P<47Y +2x47 S [] @
Define a residual (or partial remainder) w so that
wlhl=4#@x-SiiP ®

From (4) the bound on the residual is
2S[1+47 <w(j1<2S(j)+47 (6)
and its initial condition

w(0]=x @

In terms of this residual, the basic recurrence used in the
square root algorithm is

Wi+ =4w[j]1 =25 [jlsj41 =531 x4 0D ®)

2.2 Implementation of Square Root Step

The square root algorithm consists in performing m itera-
tions of the recurrence (8). Moreover, each iteration consists of four
subcomputations (Figure 1a):

1) One digit arithmetic left-shift of w [j] to produce 4w [].

2) Determination of the result digit s;,, using a result-digit
selection function. The value of the digit s;,, is selected so that the
application of the recurrence produces a w[j+1] that satisfies the
bound (6). The function has as arguments W[j] (an estimate of
4w [j]) and S [j] (an estimate of S []) and produces $j41. That is,

sin=f MWL1LSUD ®
3) Formation of F =25 [j1s,; — 5% 47V*"
and S[j+1]=S[j1+5;,1470*V.
4) Subtraction of F from 4w {j] to produce w [j+1].
The four subcomputations are executed in sequence (Figure
1b). No time is allocated for the arithmetic shift since it is per-
formed just by suitable wiring. Moreover, the relative magnitudes of

the delay of each of the components depend on the specific imple-
mentation.

sl 8y i Left Shift E

v

On-the-Fly
Conversion |
v
Carry-Save Adder
Stj+1] (a) wlj+1]
Result-
digit
selection ~ F , Csa

¥ T T 1

Conversion |___,‘
(b)

Figure 1. (a) Square root step, (b) Timing

163

To have a fast recurrence step we use a carry-save adder and
a result-digit selection function that depends on low-precision esti-
mates of the residual and of the partial result. To achieve this, it is
necessary to have a redundant representation of the result-digit. In
particular, we use the symmetric signed-digit set

sje{-2,-1,0,1,2} (10

because it allows a simpler implementation of the adder input F.
Moreover, the signed result-digit makes it necessary to use an on-
the-fly conversion to produce S{j] in a conventional form for the
formation of F .

2.3 Implementation of Square Root Algorithm

As indicated, the square root algorithm consists of m itera-
tions of the recurrence. The implementation of this algorithm can be
totally sequential, where the hardware of the step is reused for all
the iterations and the residual is updated in a register; totally combi-
national, where the hardware for the step is replicated; or a combi-
nation of both, where the step hardware is replicated k times and
this superstep is reused m/k times. Specially in the combinational
implementations, pipelining can be used so that several operations
can use the hardware at the same time, with the corresponding in-
crease in throughput. The selection of one of these alternatives is
influenced by cost, speed, and throughput considerations.

3. Result-digit Selection Function

We now present the design of the result-digit selection func-
tion. This function determines the value of the result digit 5;,; as a
function of the residual w [] and the partial result S [j).

There are two fundamental conditions that must be satisfied
by a selection function: containment and continuity. These condi-
tions determine a selection interval for each value of s;,,, from
which alternative result-digit selections can be defined.

3.1 Containment Condition and Selection Intervals

One basic requirement for the result-digit selection is that
the selection produces a next residual that is bounded. This leads to
the containment condition, which we now develop. Let the bounds
of the residual w [j] be called B and B, that is,

Blj1swljl1SBj] an

Define the selection interval of 4-w(j] for 5; =k to be
[Lg,Ui]. That is, Ly (U,) is the smallest (largest) value of 4-w(;]
for which it is possible to choose s;,, =k and keep w [j+1] bound-
ed. Therefore,

L 14w [j1< U] (12)
implies that
BLj+11<4w[j1-2S[jlk -k D < B[j+1]

Consequently,

U, f1=Bj+11+2S[jk + k240D (13)

Lej1=Blj+11+2S[jJk + k%4 U+D

We now can determine B [j] and B [j] because they are the
upper bound of the interval for k=2 and the lower bound for k=2,
respectively. That is,

U,lj1=4B(j1 L_lj1=4B[j]

Introducing these values in (13) we get

BUj+1)+2S[j1x2 +2%4 UV =4B{j] 4

Blj+11-25(j 2+ 24 *V=4B(j]

This results in

BU1= 4511+ 347 BUI=-3SU1+547 09

To show that (15) is correct, it is sufficient to replace in
(14). Note that, in contrast to division, the bounds vary with j.
These bounds satisfy the bound on the residual of (6).

The containment condition is obtained from (13) and (15).
It states that the selection interval for s;,; =k is given by the ex-
pressions

Ueljl= %s Li+1]+ %4*}'“) +2S[jk + k20D

Since S[j+1]1= 8 [j]+ kx4 YD we get

Uej1=2S[1tk + %)+ k + %)24*1'*1) (16a)

Similarly,

Ly [j1=251j1k - %) +k - %)24-0'”) (16b)

A diagram that contains information useful in the design of
the result-digit selection function is the residual vs. partial result
plot, called the R-PR plot (Figure 2). It is similar to the P-D plot,
used in division: it has as axes the partial result S {j] and the shifted
residual 4w [j]. The bounds of the selection intervals U, and L, are
ploted as lines.

(3]
ﬂl
6.004 U2
4.001 U
1
Ly

2.004

1
0.00 v SI3]

L
.2,00-\ 0

l‘f 2
4,001 -1

Ly

-6.004

Figure 2. P-PR Diagram (j=3)

3.2 Continuity Condition and Overlap

A second requirement for the selection intervals is the con-
tinuity condition: for any value of 4w [j]1between 4B [j] and 4B [j]
it must be possible to select some value for the result digit. This can
be expressed as

Up12Ly 4" an

Moreover, 1o use estimates of 4w/(j] and of S[j] for the
result-digit selection, it is necessary to have an overlap between the
adjacent selection intervals. For the square-root operation with
digit-set {-2,-1,0,1,2} the overlap is

Uer ~ L = 325U + Q- DF0*) as)

Note that the overlap depends on §[j], on k, and on j. We
will analyze the different cases later and show that there is sufficient
overlap to usc estimates for the result-digit selection.

3.3 Result-digit selection for residual in carry-save form

We now determine the result-digit selection function using
an estimate of the shifted residual obtained by truncating the carry-
save form.

The truncation of the shifted residual in carry-save form to ¢
fractional bits produces an estimate W with error satisfying

0s4w(jl-w <2x27 19

Consequently, to have a correct result the basic requirement
is that if we choose s;,,=k for an estimate w, then this selection has
to be acceptable for the interval

4wljle W, w+27¢D) (20)

The result-digit selection function we develop is of the
"staircase” type as illustrated in Figure 3a. Such a function is
defined by selection constants m;(k) which are used for partial
result interval S[j1 e [S;, S;yp). where S; = (27! +ix27%). That is,
for that interval we choose

sia=k if mKk)<SW <myik)
The set {m;(k) 1 0<i<2¥'-1)and 2<k <2} defines
the result-digit selection function.

If the selection constants have a precision of ¢ fractional
bits, that is, m; (k) =A;(k)2™, where A;(k) is an integer, we get
from the containment and continuity conditions, and (20)

A; (k)27 2 max (Ly(S;), L (Si+1)) (21a)

A (k)= 127 + 27D <min Uy 1(S:), Up-i(Sinn)) (21D)

The second expression has to hold because for (4; (k)-1) we
want to choose s;,1 = k—1. These expressions are illustrated in Fig-
ure 3b.

1‘4w[j]
m{2)
mi(1)
mi(0)
> S[j
Si1 S Su=S2?
(a)
- Uk
-+ A 224 +
m,(k) = Al(k)2 ZO L Lk
//T
Si Sir1
(b)

Figure 3. (a) Staircase selection - a fragment,
(b) Conditions on selection constants

Consequently, the main relation used for obtaining the
corresponding (staircase) result-digit selection is

A; (k)27 2 max (L (S, Le(Sinn)) @

Since the maximum digit value is 2, it is necessary to have
sp=1 to be able to represent values of s >2/3. Consequently,
$[0] = 1, which leads to s, = {0,-1,-2} (to have s < 1).

Therefore, for j =0 we obtain,

U _1[0] =-2x1x(1/3) + (1/9)(1/4) = <(23/36)

Lo[0] ==2Xx1x(2/3) + (4/9)(1/4) = <(44/36)
This results in a possible m (0) =-1. Similarly,
U _,[0] =—-2x1x(4/3) + (16/9)(1/4) = —(80)/(36)

L _1[0] =—2x1>(5/3) + (25/9)(1/4) = —95)/(36)

which results in a possible m (-1) =-5/2. Since —5/2 =-90/36 we
get a minimum value of 27 = (90-80)/36 > 1/4.

For j =1 we can have s, = {-2,-1,0,1,2}. Moreover, since
s1={-2,~1,0} and S[0]=1 the possible values of S[1] are
1/2,3/4, 1. A lower bound of £=3 is obtained [ERCE89a]. For this
value, Table 1 shows the corresponding values of L; and U, and a
result-digit selection function that satisfies (22).

Table 1. Result-digit selection for j=1

S[11=12 S[1]=3/4 S{1)=1

L, U, | 208/144,247/144 | 304/144,367/144 | 400/144,487/144
m(2) 312 9/4 3

L. U, 49/144, 82/144 73/144, 130/144 97/144, 178/144
m(1) 12 3/4 1

Lo U, - -140/144, -89/144 | -188/144, -113/144
m(0) - -3/4 -1

L, U, - -335/144, -290/144 | -455/144, -386/144
m(-1) 9/4 3

Note that it is not possible to select s, <0 when S [1]=1/2,
because this would make § [2] < 1/2.

For j =2 we obtain lower bounds of §=4 and t =3 (see

A k)27 <min(U 1), Ur_i(Sian)

where U =U —27.

The values of & and ¢ are obtained by trial and error. To
reduce the number of trials, lower bounds are obtained from the

need for a sufficient overlap, as described in [ERCE89).

For the radix-4 case with digit-set {-2,...,2} we have from

(16) the following interval bounds:

k Ulj] Llj]

2 | 2SUIxE3) + @340 | 25 1x(@/3) + (4r3)%470*D
1| 2S[IX(5/3) + (5/3)%470*D | 28]x(1/3) + (1/3)2474*D
0 | 250Ix@3)+ @324 0+ | 28 [jIx@s3) + 3P4+
1| =28 [IX/3) + (1/3Y47UD | 28 []x(5/3) + (532470
2 | 2S5 1x@3) + @324 U | 28 [1x(8/3) +(8/3)47V*D

[ERCE89]). We now develop the result-digit selection using these
values. Since we use =4 and the granularity of S{2] is 1/16, we
use exact values instead of intervals. Table 2 shows the correspond-
ing values of L, and U, and a possible result-digit selection. The
tem U is U, = U, — 1/8.

For j 23 we use d=4 and ¢ =4 [ERCE89). Moreover, 10
make the function independent of j (only dependent on S{j]) we
use the following bounds:

_ 2
Ly[1<2S [1(k-213) + (k=234 =L*, + LZ?E?’)—
Uelil> 28 [j 1k +2/3)
The term (k — 2/3)2/256 has the values:
k 2 1 0 -1 2
2
% 1144 | 12304 | 1576 | 190 | 1736

Since these limits depend on j, the result-digit selection
might vary with the value of j. We now consider the different cases.

165

Table 2. Result-digit selection for j =2

S: 8/16 916 1016
Ly, U, (x576) 784,913 880, 1033 976, 1143
m(2) k73 74 74
Ly, Uy (x576) 193,316 217,364 241,412
m(1) 172 173 1n
Lo U_(x576) || -380,-263 428, 287 476, -311
m(©0) - BT} -3/4
L, 00576 || 935,824 | -1045,-920 | -1155.-1016
m(=1) - T/ 2
kA 11116 12/16 13/16
Ly, U, 0576) || 1072,1253 | 1168,1363 | 1264,1473
m@) 2 9/4 5r
Ly, Ug (:576) 265, 460 289, 508 333,556
m(1) 12 34 3/4
Lo U_,0576) || -524,-335 -572,-359 620, -383
m(0) -3/4 34 -1
L3, U_;0576) | -1265,-1112 | -1375,-1208 | -1485,-1304
m-1) 2 -9/4 s
s; 14/16 15/16 16/16
L, U, (<576) || 1360,1583 | 1456,1693 | 1552,1803
mQ) 52 11/4 3
Ly, Ug (X576) 357,604 381,652 405, 700
m(1) 1 1 1
Lo U_(x576) || -668,-407 716, -431 754, -455
m(0) -1 -1 1
L_, U_yx576) || -1595,-1400 | -1705,-1496 | -1815,-1592
m(-1) SR -11/4 3

Since this term is relatively small with respect to 27 =274,
we use L*; instead of Ly, with the limitation that m; (k) cannot be
equal to L*,. Table 3 gives the corresponding intervals and a possi-
ble selection function.

Since we want a single result-digit selection (independent of
j). we now need to match the result-digit selections for j=0, j=I,
j=2, and j>3. We take as a basis the selection for j23 and compare
the corresponding entries with those for j=2, j=1, and j=0. When
the entries are different we adjust them to satisfy all cases. We get
Table 4. The only case we cannot match is the value m(—1)=—5/2
for j=0 (for $ [0] = 1), since for the other values of j it is -3. A sim-
ple solution is to apply S [0}=13/16 instead of 1 for the result-digit
selection. The implementation is shown in Figure 4. The converted
S[j]is called Afj], as described in the next Section. Since =27,
four fractional bits of A [j] are needed to define S. Moreover, A[j]
can have value 1, so that an additional integer bit is required. How-
ever, the result-selection function is the same for § =1.0000 and
S =0.1111, so that when A[j1=1.0000 we produce § =0.1111; in
such a case, the bit S; is always 1 and is not needed. Finally, we
need a constant value of 13/16 = .1101 for the first step. Therefore,

(253,54 = (101)(=0) + (111)A(#0) + (A2434 DA,

Table 3. Result-digit Selection for j 23

18; Sie1) 8/169/16 9/16 10/16 10161116 | 117161216
L AS: U A(S) 312, 77148 53,2916 11/6, 97/48 2,107/48
m;(2) 25/16 74 1578 1778
Lo (SO0 || 3829048 sN2,1116 | 11724,37/48 172, 41/48
m(1) 12 n 1] 3/4
LSOO 6y || 23,116 34, -23/48 56,2548 | -11/12,-9n6
m;(0) A 58 374 374
LSOV oS || 582506 | 158,838 | 25012,-9148 | 55124, 33716
mi(-1) 138 -29/16 2 -9/4
18; Si1) 12161316 | 131161416 | 141615016 | 151616/16+
L* (S0 1657) 13/6, 39/16 13, 127/48 15/6, 137/48 873, 49116
m(2) 9/4 R 11/4 3
LS Uo(S:) || 1312415116 7112, 49/48 5/8,53/48 273,19/16
m; (1) 3/4 3/4 1 1
LA oS0 o) | -1,2948 | -13/12,-31/48 | T6,-11116 -5/4, -35/48
m;(0) 374 1 1 1
LSV oSiy) || -156.-107/48 | 65124, -115/48 | -35/12,-41/16 | 7524, -133/48
mi(=1) 914 K] -11/4 3

+ includes 16/16

Table 4. Single Result-digit Selection (for all values of j)

[S:,Si+1) 8/16 9/16 9/1610/16 | 10/1611/16 | 11/16 12/16
m;(2) 25116 /4 158 178
m;(1) 12 12 12 3/4
m;(0) -12 -5/8 -3/4 -3/4
m;(-1) -13/8 -29/16 2 -17/8

1S:.5:.1) || 12/1613/16 | 13/16 14/16 | 14/16 15/16 | 15/16 16/16+
m;(2) 9/4 5 218 238
m(1) 3/4 3/4 1 1
m;(0) -3/4 -1 -1 -1
m;(-1) 9/4 -512 -11/4 -23/8

+ includes 16/16

This is implemented by the three AND and three OR gates
of Figure 4. Note that this replaces the much larger initial PLA of
other radix-4 square root schemes [FAND87).

The result-digit selection uses three bits of § and eight bits

of w (four fractional bits and four integer bits). This is the same as
for the other proposed implementations.

4. Generation of adder input F

The third input to carry-save adder has value
F(j1==28[j)sj = 5514700

stepj#0 MS part of 4w[j]
b 8 48
Ao cea |
As
Result
Digit 4 8
Selection
-~ ~ - 5
S 5 5 v
3 1| Comb.
~ Network
S
F 3
Sj+1 ¢

Figure 4. Result-digit selection implementation

] To obtain F[j] it is necessary to convert S[j] to conven-
u.onal radix-2 representation (since s; is signed-digit). This conver-
sion is done on-the-fly using a variation of the scheme presented in
[ERCER7]. It requires that two conditional forms A [j] and B[/] are
kept, such that

Alj1=S[], BLjl1=Sij]-47

These forms are updated with each result-digit as follows:

A A1+ 55,4700 if 5,20

i+1] = .

U+l B[j1+(@~s;,)47U*) otherwise
AT+ G-I 0 if 5, >0

Blj+1]=

B(j]+(3~5,,)47U*) otherwise

The implementation of this conversion requires two regis-
ters for A and B, appending of one digit, and loading. For control-
ling this appending and loading, a shift register K is used, contain-
ing a moving 1 (Figure 5).

) In terms of these forms, the value of F and the correspond-
ing bit-strings are

F[j]
;41 | Value Bit-string
1 | -24[j]-47U*D a--ailll
2 | 4A[I-44 U | 7---31100
-1 | 2B[j]1+7x47U) | p .- pp111
2 | 4B[j]1+12x470*) | b ---p1100

where a ---aa and b - - - bb are the bit-strings representing A [}]

and B[], respectively.

ALl Blj]

| Register K
T]
DR B R v v Yy v ¥
—»{ LoadConwol | —#{ LoadConrol | ;1 | Load Control |
L 2 Sjs1
[RegiswA | [RegimesB | [RegiserCc™]
Alj] JIEZ
v sign t L Y s
Sjs1 F Generator zero j Select&Jam }Q—
) tfn]

Figure 5. Network for generating F and rounding

5. On-the-fly conversion and rounding

The result digit obtained from the result-digit selection log-
ic is in signed-digit form. As mentioned in the previous section, the
partial result is converted on-the-fly to conventional form to use it in
the formation of F. Consequently, the final result in conventional
form is obtained from register A.

In addition, rounding of the result might be required. The
most used type of rounding, rounding-to-nearest, is usually done as
follows [FANDS87]. First, n+1 digits of the result are computed for
an n-digit rounded result. Then, a restoration step is performed to
obtain a positive residual; to achieve this, the sign of the last residu-
al is determined and the result decremented by one in the least
significant position if the sign is negative. Since the representation
of the partial residual is redundant (carry-save), the sign has to be
obtained from this redundant representation; the process is similar
in delay, but simpler in amount of hardware, t0 a carry-propagate
addition that converts the residual to conventional representation.
The sign of the residual is then used to decrement the n-+1-digit
result; this can be done by a subtraction or by using the decremented
form available from the on-the-fly conversion. Finally, the (un-
rounded) result is rounded by, possibly, incrementing it by 1. This
incrementation requires a carry-propagate addition. The process is
costly both in hardware and in time.

To simplify the hardware required for rounding and increase
its speed, in [ERCE89b] we describe three on-the-fly rounding
methods that are combined with the conversion. They are as fol-
lows:

1) Rounding to nearest. In this case the first steps of com-
puting an additional digit and finding the sign of the residual are
also required. However, neither the restoration step nor the actual
rounding require a carry-propagate addition because they can be
performed on-the-fly if a third form is computed during the conver-
sion. The method can be summarized as follows. The rounded result
with n digits called ¢ [n] is

Cin] i (p1—sign)=2

tin]=4An) if —1=<(s,41—sign)<1
BInl if (sp41—sign) -2

where A[n] is the converted result with n digits,
B[n]=A[n]-2", C[n]1=A[n)+27", and s,,; is the (n+1)-th
signed-digit of the result. Moreover, to have unbiased rounding to
nearest it is necessary to set to zero the least significant bit of the
result when 15, ! =2 and the last residual (remainder) is zero.

The forms A and B are produced for the conversion as dis-
cussed in the previous section. To be able to do the rounding we
need to produce also the form C . It is updated as follows:

_ AU+ Gj + 170D i 5,21
CUI=A g+ 3xa D)

if sj,=-2

This updating is also done by appending and loading, as
shown in Figure S.

In addition, it is necessary to have a network to detect the
sign and zero of the remainder from its redundant representation.
Such a network is discussed in [ERCE89b].

2) Rounding without sign detection. As a second method for round-
ing we consider the case in which the sign of the remainder is not
detected. This results in a simpler and faster implementation, but
with a somewhat larger error. As described in {[ERCE88b], the
rounding rule to produce the minimum error possible (for the digit
set {-2,....20) ist[n]=A[n].

Consequently, in this case (n+1)-th bit of the result does not
have to be computed, neither is there need for sign detection, detec-
tion of zero, nor computation of C. The rounding is unbiased but
with an error bounded by +(2/3)4™", which is larger than the error of
rounding-to-nearest ((1/2)47").

3) Rounding with estimate of sign of remainder. As a compromise
between the previous two methods it is possible to use an estimate
of the sign of the remainder and then use the rounding rules of
method 1 above. The estimate is computed using a few most-
significant bits of the redundant remainder as described in
[ERCE89b].

6. Overall implementation and timing

The overall implementation at the block-diagram level is
shown in Figure 6. The cycle time is

Toyete = Laigie _setecs {8-DitCPA + 12-input network }

+iF —generate {4—(0 -1 multiplexer }

+1cs4 {3-to-2 carry —save adder}

+ti0a (register loading }

This is comparable to the cycle time of a radix-4 division
with carry-save adder. Note the absence of a PLA for the initial
step.

Acknowledgments This research has been supported in part by the
NSF Grant No. MIP-8813340 Composite Operations Using On-Line
Arithmetic for Application-Specific Parallel Architectures: Algo-
rithms, Design, and Experimental Studies.

N
(rounded result) Sj+1

168

X - argument

—

!

A,B&C ‘ Residual Registers I
Registers prrE
and trunc
%1 Control " #{ RESULT
4 » pviGT
Fij] ” 3 # SELECTION
sign zero 8
Sj+1
Sign & Zero [
Detection [sl

Carry-Save Adder |
Wij+1] |

Figure 6. Block diagram of the square root scheme
(mantissa part)

References

[CORTS$8] J. Cortadella and J.M. Llaberia, "Evaluating A+B=K
conditions in constant time", Proc. of the International Conference
on Circuits and Systems, Helsinki, 1988.

[ERCE87a] M.D. Ercegovac and T. Lang, "On-the-Fly Conversion
of Redundant into Conventional Representations”, IEEE Transac-
tions on Computers, Vol. C-36, No.7, July 1987, pp.895-897.

[ERCE89a] M.D. Ercegovac and T. Lang, Square Root Algorithms
and Implementations, monograph in preparation, 1989.

[ERCE89b] M.D. Ercegovac and T. Lang, "On-the-fly Rounding for
Division and Square Root", this proceedings.

(FANDS87] J. Fandrianto, "Algorithm for High Speed Shared
Radix-4 Division and Radix-4 Square Root," Proc. 8th Symposium
on Computer Arithmetic, 1987, pp. 73-79.

[GOSL87] J.B. Gosling and C.M.S. Blakeley, " Arithmetic unit with
integral division and square-root”, IEE Proceedings, Vol. 134, pt. E,
no.1, January 1987, pp. 17-23.

[TAYLS5] G.S. Taylor, "Radix 16 SRT Dividers with Overlapped
Quotient Selection Stages", IEEE Proc. of 7th Symposium on Com-
puter Arithmetic, 1985, pp. 64-73.

[VINE65] M. B. Vineberg, "A Radix-4 Square-Rooting Algorithm”,
Report No. 182, Department of Computer Science, University of II-
linois, Urbana-Champaign, June 1965.

[WILL87] T.E. Williams et al., "A Self-Timed Chip for Division”,
Proc. Stanford VLSI Conference, (Ed. Losleben), MIT Press, 1987,
pp.75-95.

[ZURAS87] J.H. Zurawski and J.B. Gosling, "Design of a High-
Speed Square Root, Multiply, and Divide Unit," IEEE Transactions
on Computers, vol. C-36, January 1987, pp. 13-23.

