On-the-fly Rounding for Division and Square Root

Milo3 D. Ercegovac and Tomas Lang

Computer Science Department
School of Engineering and Applied Science
University of Califomia, Los Angeles

Abstract

In division and square root implementations based on digit-
recurrence algorithms the result is obtained in digit-serial form,
from most significant digit to least significant. Moreover, to reduce
the complexity of the result-digit selection and to allow the use of
redundant addition, the result-digit has values from a signed-digit
set. As a consequence, the result has to be converted to conventional
representation. This conversion can be done on-the-fly as the digits
are produced, without the use of a carry-propagate adder. In this pa-
per we describe how to modify this conversion process so that the
result is rounded. The resulting operation is faster than what is done
conventionally because no carry-propagate addition is needed. We
describe three rounding methods; they differ in the rounding error
and the hardware and time required.

1. Introduction

In division and square root implementations based on digit-
recurrence algorithms the result is obtained in digit-serial form,
from most significant digit to least significant. Moreover, to reduce
the complexity of the result-digit selection and to allow the use of
redundant addition, the result-digit has values from a signed-digit
set [HWAN78]. As a consequence, the result has to be converted to
conventional representation. We have shown in [ERCE87] that this
conversion can be done on-the-fly as the digits are produced,
without the use of a carry-propagate adder, which is needed in the
traditional approach. In this paper we describe how to modify this
conversion process so that the result is rounded. Without loss of
generality we discuss a sequential implementation - the scheme ap-
plies equally well to linear array (combinational) implementations.

We assume that operands and result are represented in sign
and magnitude; consequently, we operate only with the magnitudes
and the signs are processed separately. Of course, the method can be
adapted to other representations, such as true-and-complement.

2) Restoration step. Since the last partial remainder can be
negative, a restoration step is required to produce a positive
remainder. To achieve this, the sign of the last partial remainder is
determined. Since the adder used in the recurrence is redundant (for
example carry-save), the sign has to be obtained from this redundant
representation; the process is similar in delay, but simpler in amount
of hardware, to a carry-propagate addition that converts the partial
remainder to conventional representation. If the sign is negative, the
result is decremented by means of a carry-propagate addition.

3) Rounding step. Finally, the (unrounded) result is rounded
to nearest by possibly incrementing it by 1. This incrementation re-
quires a carry-propagate addition.

The overhead of this process is high, both in hardware and
time. We describe three rounding methods that reduce the over-
head; they differ in the rounding error and the hardware and time re-
quired. In summary, the methods have the following characteristics:

1) A method that produces the correct rounding to nearest
as specified by the IEEE standard [COON80]. This method requires
the computation of the sign of the remainder. We show that the
result decrement and increment operations can be incorporated in
the on-the-fly conversion process, so that no carry-propagate addi-
tion is needed.

2) A method which provides unbiased rounding with a
somewhat larger error than rounding to nearest. The implementation
of this method does not require the sign of the remainder, nor does it
require the incrementation of the result. Consequently, it is simple
to implement. It is useful in applications that can accept the some-
what larger error.

3) A compromise between the previous two methods uses
an estimate of the sign of the remainder. This estimate is computed
using a few most-significant bits of the remainder, reducing the time
for this computation. The resulting implementation is fast and pro-
duces an error in between that of the previous methods.

Note that the other rounding schemes of the IEEE Standard

can be implemented in a similar manner. Note also that the conven-
tional value of the remainder is not obtained; if it is required a
carry-propagate adder has to be used.

Traditionally, rounding to nearest is done as described fot
example in [FANDS87]. It requires the following steps:

1) An additional digit of the result is obtained for the round-
ing.

169

2. Rounding to nearest

We discuss now how the steps mentioned before can be in-
corporated into the on-the-fly conversion.

1) An additional digit of the result is obtained. This requires
one more iteration. However, to incorporate the restoration step, the
resulting digit is not used in the same manner as the previous ones
for the on-the-fly conversion. Let us call Q[r] the converted result
with n digits and p,,; the (n+1)—th digit of the result.

2) The sign of the partial remainder is determined, so that

1 if remainder is negative
Sign =10 otherwise

Since a negative partial remainder makes it necessary to de-
crement the result, the correct value of the (n+1)-th digit becomes
(Pas1 — sign). If the value of p,,, is in the range [-a, a}, the correct
digit is in the range [a -1, a].

Using this correct digit, a conventional representation of the
(n+1)-digit result could be obtained by the on-the-fly conversion
process. We would obtain the following digit-vectors (this will not
have to be computed explicitly, as explained later):

Q1n), P41 —sign)) if (pp41—sign)20
QUr+11=3 OM(n], (r—Ipyes| —sign)) if (Pns1—sign)<0

where QM [n]1=Q[n]—-r™" is the second form produced in the on-
the-fly conversion process [ERCE87].

3) The rounding to nearest operation then produces the

result g[n] with n digits, as described in Table 1, where QT [n] is
Q [n+1] truncated to n digits and QP [n]1=0[n]+r™".

Table 1. Rounding-to-nearest process

(P 1 — Sign) qln]
[r/2,a] QT[nl+r"=Q[n]l+r" =QP[n]
[0, r/2) QT [n]1=QI[n]
[-r/2,0) QT[nl+r*=0M[nl+r™" =Q[n]
[-a-1,r/2) | QT(n}=0OMIn]

From Table 1, the process is implemented as

QP(n] if pu—sign)2ri2
qn]1=4Qn] if —ri2<(p,,—sign)<ri2 m
OMIn] it (p,, —sign)<—-r/2

In addition, to have unbiased rounding to nearest, the result
g[n] is jammed to even when |p,.;| =r/2 and the last remainder
is equal to zero.

The forms Q [n] and QM [n] are produced for the on-the-fly
conversion [ERCE87]. To be able to do the rounding we need to
produce also the form QP [n].

The updating of the three forms is performed when each
signed-digit of the result is produced. Let us call p,,, the digit pro-
duced during the k—th iteration with values in the range
{—a,—a+1,.-1,0,1,..a-1,a}. The updating of the forms Q [k] and
QM [k] is the same as for the on-the-fly conversion {ERCE87). That
is,

For k>1

QK] pesr) if P20

Qlk+1] ={(QM k), F=1pisr) if ppy<0 @a)

Qk], Pra-1) if >0
MU=y OM k], (- =1 1pg 1) if Py @

For the third form QP [k] we have,
@QILk), e+ 1)

QP [k+1]1=5 (OM (K], (r = Ippyy | + 1))
(QP[k1,0)

if -1<p,1<r-2
if peyy<-1 (2)
if pry=r-1

Note that the last condition for QP [k+1] is only applicable
when the digit set of the signed-digit is maximally redundant
(a =r-1).

Implementation

A possible implementation of the rounding-to-nearest
scheme is shown in Figure 1. It consists of three left-shift registers
to keep the forms Q [k], OM [k], and QP [k} and logic to generate
the digit to concatenate and the loading controls. Table 2 describes
with

the logic for the radix4 signed-digit set

Pe ={-3.-2-1,0,1,2,3}.

case,

GLSI,
oA | IVA’///{/A’
Load
& P+l
Q I Shift
Control
%5 1A2,
e | %4505
load-shift|
(O Q QP
Pn+t
I Select and Jam E—Tsng "
l il zero
q
(final rounded and normalized result)
Figure 1. Scheme for conversion/rounding - to - nearest

170

Table 2. Updating for radix-4 case

Di+1 Q[k+1] OM [k+1] QP [k+1]
0 QK100 | @M[k]3) | (QLkLD
1 (/1198 Q.0 (Q[k).2)
-1 | (OM[k13) | (OM[k12) | (Q[k1.0)
2 QIk1.2) ((¢]L38H) Q[k1.3)
2 | (@M [k]2) | (OM[k]D) | (QM[k].3)
3 Q[k},3) Q[k12) | (QP[k]0)
-3 | (OM[k]1) | (OM[k)0) | (OM[k].2)

The rounding is performed by the selection described by ex-
pressions (1). In addition it is necessary to have a network to detect
the sign of the remainder from its redundant representation. The
most straightforward implementation uses a carry-propagate adder
to convert to nonredundant representation; this is specially attractive
if a carry-propagate adder exists in the arithmetic unit anyhow for
other purposes. However, in some cases it might be better to have a
special network for this sign detection, either because a carry-
propagate adder is not part of the unit or because connection to this
adder is slow or complicates the bussing structure. The main com-
ponent of this sign detection network is the generation of the carry
into most-significant bit; this network follows the standard carry-
skip or carry-lookahead techniques.

A possible carry-skip implementation of this sign-detection
network is shown in Figure 2. In it the carry-save remainder is di-
vided into blocks of 4 bits. For a block, a network computes C,,,,
the carry generated by the block, and P, which is 1 when the block
propagates a carry. The worst-case delay of this scheme can be
further reduced by a partitioning into variable-length blocks.

Finally, the detection of zero remainder is needed for the
unbiased rounding to nearest. This detection can follow a conver-
sion of the final remainder to irredundant, if such a conversion is
used for sign detection, or another special circuit can be used
[CORTS88], as described now and shown in Figure 2. We define z;
such that

1 if 5;=0forj2i
3)

Z =10 otherwise

where s; is the j* bit of the sum of WS and WC. That is, z; = 1 if
the sum is zero up to the i** bit. Then,

%1 = @i ©k)z @

where p; =WS; ©WC; and k; = WS;"WC;".

A zero-skip implementation generates signals N and P and
Z for each block such that

N= Hk, (Sl)
P=T]p: (5b)
Z =T1p:1©k) (50

and produces

“‘=(NC“,|I+PC,',| +Z)z;, (6)

The zero-remainder condition is represented by the output
2, =1 of the left-most block.

3. Rounding without sign detection

As a second method for rounding, we consider the case in
which the sign of the remainder is not detected. This results in a
simpler and faster implementation, but with a somewhat larger er-
ror.

To determine an appropriate rounding scheme let us consid-
er the error committed with respect to the infinite precision result g
when an (n+1)-digit result is computed. We then round to produce
the minimum error. Since the result is produced in signed-digit form
and the sign of the remainder is not known, we obtain g&[L, U]
such that

4 >L =01+ @un -) Y s

q<U=Qn)+ @+ 0D)

These expressions are illustrated in Figure 3 for both signs
of py41- To minimize the error, we choose among Qln), OM[n],
and QP [n] the one producing the smallest maximum error. From
Figure 3, we see that the choice is as follows:

Qln] if 1psul<ri2 (Region A)
qn1=<QP[n) if p,>r/2 (Region B) ®)
ON[r] if p,y<-ri2 (Region C)

Notice that this expression excludes the values
Ipas1| =r/2. For these values, the error bounds for the three
choices are

qln] p,.+1 =r/2 Pas1 =712
LA —n+1) T4 ()

Qln] (2)' -(2+r l)f

0.in] —(é —Eoyr ey

Q.in} (G o

This last table indicates that there are two choices that pro-
duce the same error, and that the error is larger than that for round-
ing to nearest (277 ™"). This verifies that exact rounding to nearest
is not possible without knowing the sign of the remainder. However,
an unbiased rounding scheme is obtained if for these cases we bal-

ance the signs of the errors. This happens if we choose Q[n] for
both p,,; =r/2 and p, ,, =-r /2. The resulting rounding scheme is

171

wcC i

ws i i+l

i+]

Skip /Propagate Network & pi

Cout

8is1

Pi+1

i+2 +3
i+2 +3
]
N
kis3 83 Pis3
8i+2 Pis2 8i+3 Pis3

Zout

sign
zero

Pi kis1 Pist kis2 Pisp kiss

U U U

Figure 2. Sign and Zero Detection Network

Qn) if Ippyl<rn2
qn}=<Q,n] if p,. >r2
Q. [n) if py<-r2

®

Note that, in contrast to rounding-to-nearest, the scheme is
unbiased without need of the detection of the case r/2,0,0,0....

The radix-2 case is specially simple, resulting in (unbiased)
signed truncation. That is,
q[n]1=QI(n] (10)

The error in this case is bounded by 2™,

172

Implementation

The implementation of this scheme uses the same module to
compute Q/QM/QP as in the first method. However, it does not
need the remainder sign-detection nor the zero detection. For radix-
2, there is no need of QP either.

4. Rounding with estimate of the sign

The previous method is simple to implement but, specially
for the radix-2 case, might have an error that is too large. To reduce
the error, it is possible to use an estimate of the sign of the
remainder and then apply the rounding rules of method 1. The esti-
mate is computed using a few most-significant bits of the remainder,
resulting in a reduction in cost and time with respect to the exact
detection of the sign.

Specifically, if the b most-significant bits of the remainder
are used the resulting error is bounded by r (27! + 27). The value
of b is chosen to get both an acceptable error and a suitable delay.
As an example, for radix-2 and b =8 the emor would be
27271 4+ 2°%), which differs from the error for rounding to nearest
by less than 1%. Moreover, the rounding using the estimate of the
sign from eight bits of the remainder could be done in one short cy-
cle, instead of about four cycles that a complete sign detection
would require.

5. Example of rounding schemes

We now show an example of the three rounding schemes.
The representation is radix 4 with result-digit set {-2,-1,0,1,2}.
Table 3 shows the conversion when the n-th digit of the result is
produced and the rounding when the digit n+1 is obtained.

k n-1 n
Qlk] xx23 | xx223
QP [k] xx30 | xx230
OM (k] x22 | w222
Pra -1 ~2
remainder
sum --- 01011xxx
carry - 00101xxx
sign --- 1
sign est(4 bits) | ---
sign est (S bits) | --- 1

The rounding process results in

rounding to nearest
rounding without sign

qln]=0OM[n]=xx222
qln]=Q[n]=xx230

rounding with sign est (4 bits) g [n]=0[n]=xx230
rounding with sign est (5 bits) g [n]=0M[n]=xx222
Summary

The proposed approach extends the on-the-fly method of
converting redundant into conventional representations in digit-
recurrence algorithms to obtain rounded results without carry-
propagate addition. Three rounding alternatives are described
differing in the error, time, and hardware. The approach, discussed
in the context of sequential algorithms, is applicable in combina-
tional arrays of linear type.

173

3
QPIn] r"‘1
U
q xr-(n+1)
L S —
7 -6 5 -4 8
rxr D
QM) /
an
Region Region A Region
C B

Figure 3. Rounding without Sign Detection (r = 8)

Acknowledgmenss This research has been supported in part by the
NSF Grant No. MIP-8813340 Composite Operations Using On-Line
Arithmetic for Application-Specific Parallel Architectures: Algo-
rithms, Design, and Experimental Studies.

References

[COONS0] J.T. Coonen, "An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic", Computer, pp.68-79. 1980.

[CORT$8] J. Cortadella and J.M. Llaberia "Evaluating A+B=K con-
ditions in constant time", Intemational Conference on Circuits and
Systems, Helsinki, 1988.

[ERCE87} M.D. Ercegovac and T. Lang, "On-the-Fly Conversion of
Redundant into Conventional Representations", IEEE Transactions
on Computers, Vol. C-36, No.7, July 1987, pp.895-897.

[FANDS87] J. Fandrianto, "Algorithm for High Speed Shared
Radix-4 Division and Radix-4 Square Root," Proc. 8th Symposium
on Computer Arithmetic, 1987, pp. 73-79.

{HWAN78] K. Hwang, Computer Arithmetic, John Wiley & Sons,
1978.

