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Abstract

An algorithm for performing radix 8 division and radix 8
square root in a shared hardware will be described. To
achieve short iteration cycle time, it utilizes an optimized
“next quotient/root prediction PLA” generally used in a
radix4 SRT division with minimal redundancy. Inaddition,
the partial remainder, partial radicand, quotient and root
are generated and saved in redundant forms, thereby
eliminating the slow-carry look-ahead adder from the
critical path timing of the iteration cycle. This method
successfully avoids the need to generatenon-trivial divisor/
root multiples (3x, 5x, etc.) and also avoids the complex
radix 8 next quotient prediction PLA typically used in a
conventional radix 8 SRT division. It also shows that a
significant amount of hardware sharing may be achieved
when square root and division are performed at the same
radix.

Introduction

In recent years, many VLSI floating point chips have
achieved fast addition and multiplication times."# In
addition to utilizing more advanced integrated circuit
process technology, many have also implemented fuil
hardware solutions; for example: fast barrel shifters, full
array Booth or Wallace tree multipliers, radix 16 multi-
plier,® full array divider," fast 64-bit adder and many
more.

Because the frequency of add and multiply occurring in
many applications is very high, designing fast adder and
multiplier at the expense of large silicon area is justified.
On the other hand, division operation occurs less fre-
quently and square root occurs at even less frequency.®
Thus, only limited silicon area can justifiably be dedicated
fordivide/squareroothardware. Nevertheless, theirspeed
must also catch up to avoid imbalances among add, multi-
ply and divide. Factoring all these conditions together, the
design of high-speed divide/square root needs to go in the
direction of higher radix.
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The algorithm for shared radix 4 division/square root pre-
viously published® readily extends to radix 8 or higher
implementation. The advantage is that the iteration speed
of radix 8 may be in about the same order as radix 4. Direct
extension from radix 4 to radix 8, however, introduces two
main obstacles.
e 3x divisor/root multiples must be generated.
For division, 3x divisor may be generated once
by adding 2x and 1x divisors at the beginning of
the division. For square root, 3x root must be
generated on thefly ateachiteration, because the
root bits are continually being formed.
¢ complex “next quotient/root prediction PLA”
(QR-PLA) is required. If only 3x multiple is
provided, ie., minimally redundant with
measure of redundancy (MoR) = 4/7, the PLA
would be practically impossible to implement.
Even at maximally redundant (MoR = 7/7), the
PLA is still large and slow in speed,” and worse
yet, generation of 3x, 5x and 7x multiples would
be required.

Obviously, the above reasons are enough for many to
abandon the choice of direct extension of SRT in favor of
cascading several radix 4 arrays to form higher radix.” The
latter means that the iteration cycle time would become the
sum of several radix 4 delay times, leading to lower cycle

speeds.

This paper will detail the algorithm for radix 8 division/
square root that directly extends SRT radix 4 division/
square root” into radix 8 so as to maintain its short cycle
time, but modified to avoid generating the non-trivial 3x,
5x, 7x divisor/root multiples, and keep the next quotient/
root PLA at the same complexity as radix 4 minimally
redundant (MoR =2/3).

Algorithm and Implementation
The algorithm and implementation described in this paper

deal with performing division and square root on
normalized IEEE format FP numbers and its roundings as



specified by the IEEE standards.® Other floating point
formats can also be used with relatively little modification.

The resulting exponent can be calculated without much
difficulty. Fordivision, thedivisor'sexponentissubtracted
from the dividend’s and the exponent bias must be added
back to the result. For square root, the exponent is shifted
right by one bit position to reflect division by two on the
exponent, and thebias must beadjusted accordingly. After
the quotient/rpot mantissa is completely formed and
rounded, the exponent result may need to be incremented
by one if the mantissa requires post normalization (one bit
right shift).

Forming the mantissa part of the quotient/root will be the
main discussion in this paper. The paper will first provide
a review of radix 4 shared division and square root
algorithm; then it willexplain how thealgorithmisextended
_to radix 8 while still maintaining many of the radix 4
hardware.

Shared Radix 4 Division and Square Root Algorithm

On division, the SRT algorithm® is based on solving this
recursive equation:

P,=r*P-q,*d o))
. w ISR i
with the range restriction n
|P._ 1< — * d )
j*1 -1
where
P, = partial remainder in the jthcycle
(P, = dividend)
r = radix
q, = quotientdigitselectedinthej-thcycle
d = divisor
n = number of divisor multiples (not
including zero)

In radix 4 with minimal redundancy, i.e., n =2, the divisor
multiples (1x, 2x) can be easily formed by mere shifting.
TheP-D (partial remainder-divisor) plotisshownin Figure
1. Table 1 shows the next quotient prediction QR-PLA,
which is used in each iteration cycle to determine the “q,,,”
and satisfying equation (2). The PLA can be realized in 19
product terms. Figure 2 shows the block diagram of radix
4division hardware. On eachiteration, the mostsignificant
8 bits of the carry and sum of the partial remainder (PR) are
summed in an 8-bit carry look-ahead adder (CLA) and
converted into sign magnitude representation.

Becoming input to the QR-PLA are 4 bits of the partial
remainder magnitude together with the most significant 4
bits of the divisor. The outputs of the QR-PLA determine
the divisor multiple to be selected (and also the next
quotientdigit). The carry-saveadder array adds the divisor
multiple to the redundant PR to form the next PR (also
redundant in the form of sum and carry bits).

Thenext PR's are then left shifted 2 bits and latched into PR
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Onsquareroot, therootextraction is a process of completing
the square,"” where:

Pju =P, - Qjﬂz’ (©)
after expanding P in terms of P,
. P =r*P-q, 207, 2Q +q;,2") ()
with range restriction o
Pl <77 *Q (5)
where
P, = partial radicand in the jth cycle

(P, = radicand)
= radix
= root digit selected in j-th cycle
root formed in j-th cycle
= number of root multiples (notincluding zero)

B 00"
[

The recursive relationship of (4) differs from SRT division
recursion (1) onlyin the formation of divisor /rootmultiples.
Thus the same QR-PLA can be used to predict the next root
bit provided that first five most significant bits of the root
are known to determine the x axis's position on the QR-
PLA. Alook-up table can be used to obtain that 5 MSB of
root. As theiteration progresses, theroot (Q of equation 4)
is coming closer and closer to the final root. Meanwhile, the
root multiples are generated, selected and added to the
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partial radicand to form the next PR. Figure 4 shows the P-
D plot for squareroot. The plot is based on the P-D plot for
SRT division, with one difference: the boundary lines that
define the regions of the next root digit selection are
“fuzzy” . Thefuzziness of theboundary linesis proportional
to the inexactness of the root bits. The root is maximally
inexact at the beginning of recursion; therefore, the initial
5-root bits obtained must be carefully chosen to make sure
the QR-PLA of Table 1 is still valid without having the
uncertainty region touching those fuzzy boundary lines.
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Extension into Radix 8 Shared Division and
Square Root

Based on the minimally redundant radix 4 SRT shared
division and square root, the magnitude of the PR P,)is
always within 2/3 D (range restriction requirement). For
radix 8 (r = 3), after 3-bit left shift of the PR, the magnitude
of thenextPR(I r*P,, 1) should be within 16/3 D. Figures
5a and 5b illustrate that relationship. Now, this PRhas to
be reduced again into the range of 2/3 D. This algorithm
proposes a two-step overlapping reduction:

Stepl.  Px, =r*P-qx, *d 6)
with qx  =-4,0, +4
StepIl. P, =Px, -qy, *d @)

with qy,, =-2,-1,0,+1, +2

Px = intermediate partial remainder
gx, qy = intermediate quotient digits
selected

where



16/3D

28D

Fig. 5a. The magnitude of Pj after

Fig. 8b.r* Pj where r=8
each iteration with MoR = 2/3

Step I requires a row of carry-save adder to subtract/add
4d into PR. Step I will reduce the range of PR into that of
radix 4 range (< 8/3 D). Figure 6 shows the positive and
negativeranges of the PR. Should the PR fall within region
A, then gx,, = 0; and the PR goes to Step I unmodified
(Figure 6a). In region B, 4d is subtracted out from PR
(Figure 6b) and for region C, 4d is added (Figure 6c). Step
O is exactly the same as the radix 4 version. The PR is
reduced in a normal radix 4 fashion since its range is well
within radix 4 SRT division/square root. The trick is now
to overlap the execution of Step I with Step II.

Figure 7 shows the block diagram of radix 8 divide/square
root hardware. From the beginning of the iteration, Step I
and Step Il reductions are performed simultaneously. Step
I assumes that the PR is either in region B or C; thus the
operation required must be either to subtract 4d or to add
4d into the PR. This decision can be easily determined by
performing fast-carry look-ahead on the three most signifi-
cant carry and sum bits of the PR. This carry-outresult does
notyield the actual sign of the PR. It takes a full carry look-
ahead adder todetermine the sign. However, the carry-out
may be different from the actual sign only if the PR is in
region A of Figure 6. Therefore, itis sufficient for this carry-
out logic to determine whether the PR is in region B or C.

Step Il reduction is performed with the assumption that the
PRis in region A and this reduction is the same as radix 4.

The model division of both steps goes through the 9-bit
carry look-ahead adder (CLA), complementer (to obtain
the sign magnitude representation) and QR-PLA. Figure 8
shows the 9-bit CLA of Step I and Step II. The result of 9-
bit CLA of Step I are compared with 2.5 (for divisor/root
< 1.5) or 3.0 (for divisor/root 2 1.5). This would determine
whether the PRis inside region A or outside region A. The
CLA is 9 bits wide with the 5 most significant bits sitting to
the left of the binary point. Since the range of | r*P, I has the
maximum of 16/3 D (=10-2/3 as D approaches 2), this 5-bit
magnitude to the left of the binary point is sufficient to
represent the maximum range of the PR (including its sign
bit).

(3 bit left shift of partial remainder)
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If the PR is inside region A, Step Ireduction is not selected
and gx,,, is zero and the divisor/root multiple is selected
based on Step II's QR-PLA. If the PR is outside region A,
then the result of the first CSA row is selected and the
divisor/root multiple selection is based on Step I's QR-
PLA. Combining the results of QR-PLA on both steps,
Table 2 shows the quotient/root bits produced in that
iteration. The quotient/rootbits arealsostored redundantly
in “Q” and “Q-1” forms. Figure 9 shows the scheme for
selecting and storing the quotient/root in the “Q” and “Q-
1” forms.

For square root, the most significant 5 bits of the root
including the hidden bit must beinitially obtained through
a look-up table. The look-up table would take the LSB of
the exponent (which indicates odd/even exponent) and
the 6 mantissa bits as inputs. The look-up table with 7
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Table 2 Combined Next Quotient/Root Digit from Step | and Step |l

L | [ aveq |
revun R W

A
CLA result 0 1 CLA resuttis
B NEG mx ! Mux | € NEG or ZERO
3bit 3bit
Next Q Form Next (Q-1) Form

Figure 8 Quotient/Root Bits in Q and Q-1 Form
inputs and 5 outputs can be realized in PLA with 26 terms
(Table 4). These initial root bits must be carefully chosen to
make sure that after the initial two reductions of the PR,
equation (5)is still satisfied (PR<2/3 Q). Table3showsthe
choices for root multiple generation.

The combination of the quotient digits selected by both
Step1(-4, +4) and Step 1 (-2, ..., +2) in fact indicates that the
radix 8 digit set is from -6 to +6. The bound of the PR at the
end of each iteration could then be 6/7 D, instead of 2/3 D
as in pure radix 4. However, this 6/7 D bound cannot be
used since the way the PR is partitioned into inside or
outside, region A is not using 4 D as the dividing line.
Instead, two horizontal lines of magnitude 2.5 and 3.0 are
used for bounding region A. Magnitude comparison to
these fixed quantities is much easier to realize than
comparing PR to 4 D. Thus, determining inside/outside
region A can be done in a short time.

Overall, theiteration cycle timeis increased fromradix 4 by
a single carry-save adder and a multiplexer delay. The
impact of this delay is relatively insignificant since it
represents only about 15 percent additional delay on top of
radix 4.

Examples of iterative square-rooting process using this
algorithm are shown in the appendix.
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Table 3 Choice of Root Multiples

Rounding

The iteration continues until the guard and round bits of
the quotient/roothavebeen produced. Atthistime,thePR
is converted into non-redundant form by a full mantissa
width CLA. The sign of the PR determines which “Q” and
“QQ-1” forms are the intermediate quotient/root. A non-
zero PR means that the sticky bitis set; otherwise, the sticky
bit is zero. Depending on the rounding mode, the LSB,
guard, round and sticky bits determine the round-up
condition on the LSB of the intermediate quotient/root.
Finally, another CLA cycle is required to increment the

Comparison to Other Schemes

This algorithm is an extension of the previously published
radix 4 shared division and square root.*

Theextension to radix 8is achieved by overlapping the two
steps of quotient/root prediction logic (Step I and Step II).

Taylor's paper on radix 16 SRT Dividers with overlapped
quotient selection stages” mentioned the possibility of
overlapping the two steps but chose not to use it in favor of
overlapping the quotient selection with divisor multiple
and PR formations. Indeed, Taylor's method for overlap-
ping the 2 steps gave rise to costly duplication of quotient
selection logic hardware.

This paper, on the other hand, shows how early determina-
tion of the sign of the PR and the introduction of multi-
plexer B in the array (Figure 7) eliminate the above men-
tioned duplication of quotient selection logic, while still
achieving true parallelism. Importantly, this overlapping
execution of Step I and Step I which naturally works for
division, also works for square-rooting. Thisis contributed
to the carefully chosen digits on QR-PLA that avoid touch-
ing the fuzzy boundaries of Figure 4.
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It must also be noted that performing square root in the
same radix as division enables hardware sharing in the fol-
lowing logic groups:
¢ Quotient/root prediction logic
¢ Carry-save adders
* Registers holding PR and quotient/root
¢ Sequencing logic that controls the number of
iterations
* Radix controlled shifting logic for PR and
quotient digits

Input = 7 bits LSB of unbiased exponent (actual exp — IEEE bias)
_ 6 MSB (bits) of mantissa (right after the hidden bit
Output = 5 bits Hidden bit followed by 4MSB of the initial root

Number of torms = 26Output polarity is positive true

1-10111 00001 011000~ 00001
-01111- 00100 00011-~ 00010
11011-- 00010 10011-- 00001
01-11-- 00001 Or1--1- 00010
1--101- 00001 10000-- 10111
oti-1-- 00010 00-10-- 00001
00-01-- 00001 0101--- 00001
11-01-- 00001 -011-0- 00011
--110-- 00010 -010--- 00010
10--1-- 11000 11-10-- 11101
10-1--- 11000 110---- 11100
1-10--- 11010 -1-0--- 00100
O1----- 00100 O------ 10000

Table 4 Look-Up PLA for Prediction of the First 5 Root Bits

Conclusion

Radix 8 SRT division and squareroot provides an attractive
solution to faster division and square root operation, thereby
closing on the speed gap that exists as faster solutions on
add and multiply become available.

This paper has demonstrated the viability of a hardware
solution on radix 8 shared division and square root being
an extension of the radix 4 algorithm.

The main advantages are:

» avoid the need to generate non-trivial divisor/root
multiples;

¢ maintain the complexity of the next quotient/root
prediction PLA to the same level as radix 4;

¢ need relatively little additional hardware on top of
radix 4;

¢ introduce little additional delay to the iteration
cycle time;

¢ efficient hardware sharing between division and
square root.
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Appendix

ODD EXPONENT
vhat is the radicand (two 32 bit integers) ?
40023456 789abcde

predicted root bits : 11000
Region B and sel2=0 sel1=1 negate=1
sum PR: 0010010001101000101011001111000100110101011110011011110000

Region A and sel2=0 sel1=0 negate=0
sum PR: 0111101000110000010101110110010100000011101010011101110000
cry PR: 1ooo1w1mo1mooo1mwm1m1w1mmoooomoo1mnm1m

Qj II @
Region A and sel2=0 sel1=1 negate=0

sum PR: 0110011011010101110001011111001010100011100100010011111000
cry PR: 1011001101010101011101100101101010111010110111011100001000
Qj :
@j 11 :-00011000000100
Region A and sel2=0 sel1=1 negate=0

sum PR: 1001001101111010011000101011111100110101100110000001111000
cry PR: 0111110101011111011111111010101110111101110111111110001000

Region ¢ and sel2s1 sel1=0 negate=0

sus PR: 0100111111000111000101110101101110111101110000000001111000
cry PR: 01110101111107111111110111111161111011101111111111110001000
Qj 1 :+0110000010001100000000000000000000000000000000000000000000
Qj 1I :-0011000001000101000000000000000000000000000000000000000000
Region C and sel2=0 sel1=1 negate=0

sua PR: 1111010001000001101011110100010100100010000000000011111000
cry PR: 1011101111101110111010110111011110111011111111111100001000
@j 1 :+0110000010001011100000000000000000000000000000000000000000
Qj II :-0001100000100010110010000000000000000000000000000000000000
Region C and sel2=1 sel1=0 negate=D

sus PR: 010010110111010100101010001110010001 1111000
cry PR: 0111100101010101011010111010110111011111111111111100001000
Qj I :+0110000010001011001100000000000000000000000000000000000000
Qj II :-0011000001000101100101000000000000000000000000000000000000
Region C and sel2=0 sei1=0 negate=0

sum PR: 0111110111011010011100011100100010000000000000000011111000
cry PR: 0010101010100111000111010110111011111111111111111100001000
Q I »o11ooooo1mo1011omm11ooowomotmoooooowoowuumommm

Region 8 -nd sel2=0 sel1=1 negate=1
sum PR: 11001000111111100011411001000100000000000000000000"

cry PR: 0111111101100111101010110111091111111111111111111100001000
Qj 1 :-0110000010001011001011000100000000000000000000000000000000
Qj I1 :+0001100000100010110010110001110000000000000000000000000000
Region A and sel2=0 sel1=0 nega
0111000100010111110110111111111111111111111111111111110000
1000111011010100011010001100000000000000000000000000010000

11111000

te=1
sum PR:
cry PR:
Q I:
Qj 11 :
Region A and sel2=0 sel1=0 negate=1

sum PR: 1111111000011101100110011111111111111111111111111100000000
cry PR: 0000000101000100100011000000000000000000000000000100000000
Q I:
Qj II :
Region A and sel2=0 sel1=0 negates1

sus PR: 1111101011001000101011111111111111111111111111000000000000
cry PR: 0000000001001000100000000000000000000000000001000000000000
Qj I:
Q11 :
Region A and sel2=1 sel1=0 negate=1

sus PR: 1101010000000001C11111111111111111111111110000000000000000
cry PR: 0000010010001000000000000000000000000000010000000000000000
Q 1:

Qj 1I :+0011000001000701100101100010111111111111000000000000000000
Region B and sel2=0 sel1=1 negate=1

sum PR: 0000011001100111010011101000000000000100000000000000000000
ery PR: 0100000000010001011000101111111111110100000000000000000000
Q I : -0110000010001011001011000101111111111100100000000000000000
Qj 11 :40001100000100010110010110001011111111111001110000000000000
Region A and sel2=0 sel1=1 negate=1

sum PR: 0110111001010101100011000100000000100010001111111111110000
cry PR: 100000100010110011110101011111111011001110000000000001

Qj 1 :+00000

Qj I +ow11mom1mm1m1m1ooo1m1111111111oo1011110000000000




Region B and sel2=0 sel1=1 negate=1

sum PR: 1010001011011101100100010100001101110100100001111100000000
cry PR: 1010001001001100110101010111101100110010111100000100000000
@j I :-0110000010001011001011000101111111111100101110100000000000
@j II :+0001100000100010110010110001011111111111001011101110000000
Region A and sel2=0 sel1=1 negate=1

sum PR: 0001101111110111111100100100111011111100101110001111110000
cry PR: 1100101000011000001110010110011001010010101011100000010000

Qj I1I :+0001100000100010110010110001011111111111001011101011110000
Region A and sel2=0 sel1=1 negate=1

sum PR: 0100111001101000000000011111101010001001110000100010000000
cry PR: 1010001100101111101101000110111111101010111010111100000000

Q I:
Qj I1 :+0001100000100010110010110001011111111111001011101011011110
Root : 0011000001000101100101100010111111111110010111010110110111

Radicand = 40023456 789abcde
Final root = 3ff822cb 17ff2eb?

EVEN EXPONENT
Vhat is the radicand (two 32 bit integers) ?
3ffabcde 98765431

predicted root bits : 10101
Region B and sel2=0 sel1=1 negate=1
sum PR: 0001101010111100110111101001100001110110010101000011000100

Region C and sel2=0 sel1=1 negate=0
sum PR: 0110000111010100111000101011101100101000000111010110010000
cry PR: 0101010000010010000100100000100010001010100001000010010000

Region C and sel2=0 sel1=1 negate=0
sum PR: 0011010011001000010110101110001001101011011101111011111000
cry PR: 1001011001101111010010110011101100101001100101001000001000

Region B and sel2=0 sel1=0 negate=1
sum PR: 1011001011000011110100110001011101111001101011100011111000
cry PR: 1001101001111001010111011101010100101110101100111100001000

Qj II :
Region C and sel2=1 sel1=0 negate=0
sum PR: 1000101010010110011101001001101010111100111011111111110000
cry PR: 0100101001010011000100101100101010000110001000000000010000
Qj 1 :+0101001010111100000000000000000000000000000000000000000000
Qj II :-0010100101011101000000000000000000000000000000000000000000
Region A and sel2=0 sel1=1 negate=1
sum PR: 1000111110111101110001011101011001101011100000000111111000
cry PR: 0110001010000110011101010101001110101100111111111000001000
Q 1: 0
Qj II :+0001010010101110111110000000000000000000000000000000000000
Region B and sel2=0 sel1s1 negate=1
sum PR: 1100110010101010010001000010111000111011111111111110000000
cry PR: 0110101011101111010101010010001010001000000000000010000000
Qj I :-0101001010111014110100000000000000000000000000000000000000
@j II :+0001010010101110111101110000000000000000000000000000000000
Region C and sel2=0 sel1=1 negate=0
sum PR: 0011001110011010000111010111000111011111111111111111110000
cry PR: 1001100011001014111001010001010001000000000000000000010000
Qj I :+0101001010111011110101100000000000000000000000000000000000
Qj Il :-0001010010101110111101010010000000000000000000000000000000
Region B and sel2=0 sel1=0 negate=0
sum PR: 1011110001100100011101001401011100000000000000000111111000
cry PR: 1001011100110010101001100101100111111111111111111000001000
Qj I :-0101001010111011110101010100000000000000000000000000000000
Qj I1 :
Region A and sel2=0 sel1=0 negate=0
sum PR: 0001100100101010010100111000100000000000000000000000001000

Qj II :
Region 8 and sel2=0 sell1=1 negates1
sum PR: 01011011110100111011110001

00000000000000000000000001111000
cry PR: 1101101011111101101111111111111111111111111111111110001000
Qj I :-0101001010111011110101011000000100000000000000000000000000
Qj II :+0001010010101110111101010110000001110000000000000000000000

75

Region C and sel2=0 sel1=1 negate=0
sum PR: 0111101101111101000000101110010001111111111111111111110000
cry PR: 0100101010100111110111100001011100000000000000000000010000
Q 1 ++0101001010111011110101011000000101100000000000000000000000
Qj 11 +-0001010010101110111101010110000001010010000000000000000000
Region A and sel2=1 sel1=0 negate=0
sus PR: 1110101001111101011101110011101110010000000000006111111000
cry PR: 0011011100010000100100011010100011011411111111111000001000
°j 1 :-000000 000000000000000000000000000000000000000000000000000
Qj 11 :-0010100101011101111010101100000010101001000000000000000000
Region C and sel2=0 sell=1 negate=0
sum PR: 0101111001111111100111010110000011001000000000000001111000
cry PR: 0110001100000001010100111011110101101111111111111110001000
Qj 1 :+01010010101110111101010110000001010100111
Qj II +-0001010010101110111101010110000001010100110010000000000000
Region A and sel2=0 sel1=0 negate=1
sum PR: 0000011100011101410101000000111001000010010000000011111000
cry PR: 1111010101010000101101011110101101110011011111111100001000
oj ! M 000000000000000000000000000000000000 Q000000000 00 000
Qj xl N 0000000000000000000000000000000000000000000000000000000000
Region A and sel2=0 sel1=1 negate=1
sum PR: 1001001001101011000011110010100110001001111111111110000000
cry PR: 0101000100001001010000001010010000100100000000000010000000
Qj 1: 0000000000000000000000000000000000000000000000000000000000
Qj 11 +40001010010101110111101010110000001010100110011111110000000
Region ¢ and sel2=0 sel1=1 negate=0
sum PR: 1011111001100101110101110110111111001001100000010000000000
cry PR: 0000001010110100010100100000000001001100111111100000000000
Qj 1 ++0101001010111611110101011000000101010011001111101100000000
Qj I +-0001010010101110111101010110000001010100110011111010010000
Region A and sel2=0 sel1=0 negate=1
sum PR: 0000001010000111101000111001111101110000011011001101111000
cry PR: 4111011010110000101010001110100100110111000001000000001000
Qj 1:
Qj 11 :

Root : 0010100101011101111010101100000010101001100111110100111111

Radicand = 3ffabcde 98765431
Final root = 3ffiaef5 6054cfa8




