An Accurate, High Speed Implementation of
Division by Reciprocal Approximation

D. L. Fowler and J. E. Smith

Astronautics Corporation of America
5800 Cottage Grove Rd.
Madison, Wisconsin 53716

Abstract

Newton-Raphson reciprocal approximation is a practical method for
implementing high-speed division. It provides quadratic convergence and
is based on multiplier technology which can take advantage of extensive
hardware parallelism. While unlimited accuracy is theoretically possible,
it is very important to minimize the number of iteration steps to improve
performance and/or to reduce hardware requirements. Consequently, there
is an important accuracy/speed/cost tradeoff in reciprocal approximation
implementations.

This paper discusses a reciprocal approximation implementation
with special attention given to the tradeoffs just mentioned. An interpo-
lation method is used to insure that an initial approximation, held in a
ROM table, is as accurate as possible. A new method for implementing
the iteration steps is given. Special instructions are used so that max-
imum accuracy can be carried between iteration operations. For 64-bit
floating point operands (53-bit mantissa), a table lookup and only two
iterations are required. Meanwhile high accuracy is maintained. The
rounded reciprocal rarely differs from a true "round to nearest” value
based on an infinite precision result. When the results do differ (less
thart once every 1000 calculations), the difference in accuracy is shown
1o be less than 0.025 of a least significant bit (LSB).

Introduction
Of the four primary floating point operations, division is the least
frequently used and the most difficult to compute. Generally speaking,
division occurs three to four times less frequently than multiplication and
takes three to four times as long to compute in most implementations.
Furthermore, division algorithms tend to be difficult to pipeline due to
the dependencies inherent in selecting quotient bits.

Given the above constraints, along with others such has hardware
cost and chip "real estate”, a good engineering solution to the problem of
high speed floating point division is to first find the reciprocal of the divi-
sor, and then multiply by the dividend. Such "reciprocal approximation”
methods are typically based on the Newton-Raphson iteration method [1].

The Newton-Raphson iterative division technique starts with an ini-
tial approximation of the reciprocal of the divisor, usually implemented
through a look-up table. Then an iterative method is used to form suc-
cessive approximations where the error decreases as the square of the
previous approximation. Therefore, with a sufficiently accurate starting
approximation, the algorithm quickly converges to the reciprocal with
desired accuracy. After the reciprocal is found it can be multiplied with
the dividend to form the final quotient. (In fact the multiplication with
the dividend can be done at an intermediate stage to improve overlap of
the operations[2]).

Newton-Raphson division methods use multiplication as a basic
operation; this leads to two advantages for high performance implementa-
tions.

(1) Hardware complexity is reduced because much of the division
hardware can be shared with the multiplier.

(2) Division is more easily pipelined because multiplication is easily
pipelined.

Division in the IBM 360/91 [3] used the Newton-Raphson method
and used a significant amount of the multiplier hardware. In the CRAY-1
[2] (and all subsequent Cray Research processors) division is imple-
mented via a series of instructions consisting of a reciprocal approxima-
tion instruction, an iterate instruction, and two multiplication instructions.
This not only reduces hardware requirements, but it permits all the func-
tional units to accept a new operand every clock period (an important
factor in keeping vector control hardware simple). The Floating Point
Systems array processors [4], perform division by reciprocal approxima-
tion, with most of the steps being done in software. A similar approach is
used in the recently-announced Intel i860 [5]. In the Intel i860, a single
chip processor, saving chip real estate was very likely a key factor in the
decision to use reciprocal approximation for division.

A disadvantage of typical hardware implementations of the
Newton-Raphson iteration method is that accuracy is less than with a
direct division method. Theoretically, accuracy equivalent to other divi-
sion methods can be attained if enough iteration steps are used and if
enough bits of precision are maintained throughout. However, in the
interest of speed and hardware cost, real implementations tend to minim-
ize iteration steps and bits of precision. A small amount of accuracy is
traded for speed and hardware cost savings. This paper examines the
Newton-Raphson division method initially used in the Astronautics ZS-1
computer systems. In the ZS-1 special steps are taken to reduce losses in
accuracy, while maintaining the speed and cost advantages of the method.

The Astronautics ZS-1

The Astronautics ZS-1 [6] is a high performance 64-bit computer,
designed for scientific and engineering applications. Floating point addi-
tion, multiplication, and division are implemented with paraliel pipelined
functional units. In the prototype and beta systems, the functional units
are built from standard TTL SSI and MSI circuits and 16 x 16 bit VLSI
fixed point multiplier chips. Each of the three floating point units fits on
a 18 x 18 inch printed wiring board (PWB).

The ZS-1 uses IEEE standard floating point formats [7], but in the
interest of higher performance, not all aspects of IEEE standard arith-
metic are followed. In the initial ZS-1 systems, floating point division is
done by reciprocal approximation using a variation of the Newton-
Raphson method described in this paper'.

Reciprocal Approximation Algorithm

Because the final multiplication required to form the quotient is
done with an ordinary floating point multiplication instruction, we con-
sider only the problem of forming the reciprocal of a divisor.

We form the reciprocal of a floating point number, B, whose
mantissa is b. The exponent arithmetic is very straightforward, and we
concentrate on finding the reciprocal of b. The recursive solution for
reciprocation of a floating point mantissa b using the Newton-Raphson
method is:

Xin=Xi(2-b xX;)

! After the ZS-1 prototypes were made operational, a new floating
point unit was designed and built using a VLSI floating point chip set.
With this new design, the Newton-Raphson method was dropped in favor
of the direct division method provided by one of the VLSI chips.

X is an initial approximation of % and X;,, is a successive approxima-
tion beginning with X;.
The ZS-1 uses the following steps to form the reciprocal of b:
X, is found from a ROM look-up table in the reciprocal approxi-
mation unit.
bX is formed by doing a multiplication with dedicated hardware
in the reciprocal approximation unit.
(2 — bX) is the two’s complement of Xy (2 > bX ¢ > 0.5).
X, =X(2 - bX) is formed by doing a multiplication with dedi-
cated hardware in the reciprocal approximation unit.

)
@

3
@

(5) X, is formed using the Multiplication Unit.
©6) (2- bX,)is the two’s complement of bX; (2 > bX, > 0.5)
(M) X,=X,(2 - bX,) is formed using the Multiplication Unit.

X, is the final approximation of 1/b.

Execution of the division is implemented as follows. The Recipro-
cal Approximation instruction does the first four steps. Step 1 of the
Newton-Raphson reciprocal approximation algorithm is done by a ROM
look-up table on the Reciprocal Approximation Unit. Steps 2 - 4 are
done on the same unit to generate an iteration on the look-up value.
Steps 5 - 6 are done using the Multiplication Unit by a special Iterate 1
instruction. Step 7 is done using the Multiplication Unit by a special
Iterate 2 instruction. Finally, the reciprocal is multiplied by the dividend
to form the quotient using the Multiplication Unit via the normal multi-
ply instruction.

In terms of the above algorithm, the two major enhancements pro-
vided by the ZS-1 for improving accuracy are:

(1) The way in which the ROM table look-up is done to form X .

Since the Newton-Raphson algorithm has quadratic convergence,
the accuracy of the initial approximation is squared upon each
iteration. Therefore, special steps are taken to make the absolute
value of the initial error as small as possible; any extra initial
accuracy is amplified by later steps.
In contrast to previous implementations of this algorithm, such as
in the Cray Research processors, the instructions lterate I and
Iterate 2 are not implemented as simple floating point multiplica-
tions where the two’s complement of the result of lrerate 1 is
formed before being used in the Jterate 2. In the ZS-1, the result
of the Iterate 1 instruction is stored in a special format to main-
tain high accuracy between the Iterate 1 and Iterate 2 instruc-
tions.

@

This paper concentrates on the forming of the reciprocal based on
the mantissa. Calculation of the exponent is handled in a straight-
forward manner. In forming 1/B the exponent portion is simply
ER =-EB, where EB is the unbiased exponent of B and ER is the
unbiased exponent of the reciprocal R = I/B. Of course the exponent
must be adjusted along with the mantissa if normalization is needed and
the bias value added in.

ZS-1 Rounding

In a practical high-speed implementation of reciprocal formation,
the primary problem we are faced with is maintaining the accuracy of
reciprocals when rounding is performed. The most accurate floating
point rounding is achieved if the rounded result is the same as if the
operation was carried out to infinite precision prior to rounding. This is a
stated goal of IEEE standard arithmetic. We will refer to this type of
rounding as infinite precision rounding. As a practical matter, opera-
tions can typically be carried to some finite precision to get the same
result as if infinite precision were used. For forming a reciprocal, this
means that the precision of the result before rounding must be twice the
precision of the input operand and final result. For a 53-bit mantissa, this
implies that 106 bits are needed prior to rounding.

In the ZS-1 design, we made the decision to maintain fewer than
106 bits of precision prior to rounding. This saved one complete itera-
tion step, reduced the time to form a reciprocal by about 50 percent, and
reduced the width of the parallel multiplier used for the final iteration
step.

61

Using fewer bits of precision prior to rounding does mean that the
results will not always agree with infinite precision rounding. On the
other hand, we carefully control the error at each step of the algorithm so
that after the final iteration and rounding are done, the result rarely
differs from infinite precision rounding as defined by the IEEE standard.
When it does differ, the difference in accuracy between the two methods
is shown to be very slight.

The ZS-1 is architecture supports four different rounding modes.

(1) "Round to nearest” - The result is as close to the exact reciprocal
as the floating point representation and implementation allows.

(2) "Round to positive infinity” - The result is guaranteed to be
greater than or equal to the exact reciprocal.

(3) "Round to negative infinity" - The result is guaranteed to be less
than or equal to the exact reciprocal.

(4) "Round to zero" - The result is guaranteed to be between zero

and the exact reciprocal. (This is the same as round to +eo for
negative numbers and round to —e for positive numbers.)

It is important to note that we are willing to diverge from the IEEE
standard rounding algorithms in the interest of improving performance
and reducing hardware requirements. For example, in the infinity modes
we do not insist that the result be the closest representable floating point
result that bounds the correct resuit; we only insist that it bounds the
correct result. The analysis of this divergence is included in this paper.

Implementation

This section describes how the reciprocal approximation is realized
in hardware. Throughout this description, b represents the mantissa of
the floating point number B discussed earlier, and ¢ represents the
mantissa of the number which approximates 1/B. The initial approxima-
tion Xo and first iteration X, are both done on the special purpose
Reciprocal Approximation Unit. A block diagram of the hardware is
shown in Fig. 1. The final approximation X, is done in two parts on the
Multiplication Unit. A block diagram of the Multiplication Unit is shown
in Fig. 2.

Initial Approximation

The initial approximation X is done through a ROM look-up table.
The size of the table is 32k by 16 bits. The 15 most significant bits
(MSBs) of the mantissa, b,b; - - - byb,s, excluding the hidden one, are
used to do the initial approximation look up.

Since the table is addressed with b (the mantissa bits of B), where
2> b 21, the resulting reciprocal X, will have the range 0.5 < X < 1.
However, as explained below, the equation implemented the ROM look-
up table limits the range of X to 0.5 < X4 < 1, and therefore the form of
a table entry will be 0.192935 * - - 415G 16

To generate the ROM look-up table, rather than merely truncating
the input after b5, the values in the ROM table are for inputs with a one
in the 16th bit of the mantissa b4 (the first "unseen” bit), and the rest of
the bits, b7 - - - bs, are zeros. The ROM table contains the approximate
reciprocals of:

Lbbs - - - bisb151000...

This technique, which we refer to as "ROM interpolation”, in effect
"averages” the error introduced during the look-up procedure due to trun-
cation of the input, in much the same way as rounding the output minim-
izes error due to truncating the output.

The resulting approximate reciprocal output is rounded back to the
LSB of the table entry. The output is rounded by adding a one to the bit
location just past the output width of the table. The following equation
is used to generate the ROM table:

1 -17
= —
b’ +271%

Where b’ = l.blbz v b14b15.

Xo

EXP EXP
CALC ADJ
b MULT2 To Reg(.‘Flls
32 MULT1 (2 - bX0) 2 32 —_—
From Reg. File ?1’- 64
il e Rl
- L
o ADJUST {5 | LOOKUP
Figure 1: Reciprocal Approximation Unit Block Diagram
OPERAND 1 EXP EXP EXP "
...__+ f— — -—
64 — CALC CALC ADJ RESULT
From 53
Reg. File —— | 64 X 64 PARTIAL 64 | ROUND 53 64
OPERAND 2 53 | MULTIPLY |—| [—| PRODUCT |—*—| AND - To Reg. Fite
—_7L
64 P L—— MATRIX > SUMMATION NORMALIZE | [
(a)

B 64 EXP EXP EXP ”

s __ _ 7 | 1= - _

OPERAND 1 — CALC CALC ADJ TEMP
b o
Reg. File 64 X 64 PARTIAL 64

64 ’ (2-bX1)]

X1 64 8 | mutewy |—| || PRopucT |- 2:5: - To Reg. File

%;

OPERAND 2 [> Q MATRIX P | | summaTiON > | 64

CJ 53 -
(b)

X1 64 EXP [EXP EXP "

.—_ﬁ p— — — -_

OPERAND 1 —| CALC CALC ADJ ’ X2
From 53
Reg. File —F—— |64 X 64 PARTIAL 64 | ROUND 53 64

TEMP 64 MuLTIPLY|™| |—| PRODUCT |—#—| AND - To Reg. File

_——ﬁg

OPERAND 2 > —<: EXPAND | |MATRIX | [> SUMMATION NORMALIZE | [P

— 53 64 — —
(c)

Figure 2: Multiplication Unit Block Diagram
a) Normal Multiplication

b) Iterate 1
¢) Iterate 2

Determining the range of X, :

X = +277

1+276
xﬂm.,<1

1 17
Xg =————=+2°
O = (2 - 2715 4 271

X 0> 2

The resulting approximation of X, is a number ¢ of the form
0.919293 - - - The 16 bits g192 - - - 15916 are used as the entries in the
look-up table. Though bit ¢, is always a one, it is still stored in the
table rather than using the extra bit to store ¢,7. The reason for this is
that the next two steps use the 16 MSBs of ¢ as a multiplicand. The
hardware implementations for these steps use 16 bit input VLSI multi-
pliers which cannot take advantage of the additional bit g,,.

62

Taking into consideration the truncation of the output to 16 bits
after rounding, the equation for the ROM look up function is actually:

Xo= +2r-(g-97

1
b’ +279
Where b’ is defined above, and:

q= =01q293- -

1
' +271%
q'=.19293" - 915916

r =4

Computation of X

The X, approximation is done by implementing the first iteration of
the Newton-Raphson approximation in special purpose hardware. This is
shown in Fig. 1.

First, b X X is formed by multiplying the 16 bits of X, by the 32
MSBs of b and rounding the result to 32 bits. The multiplication is
implemented using standard 16 x 16 bit VLSI multiplier chips. For per-
formance and space reasons, The lower 16 bits of the 48 bit product are
not formed. However, a round of these bits is done into the LSB of the
32 bit product.

Next, we form (2-b x X,). Rather than generating the two’s com-
plement of b x X, we can simply one’s complement the bits of b xX,
as was done in the IBM 360/91 division algorithm [3). This adds only a
small error since the one’s and two’s complement differ only by an LSB.
This avoids the time and hardware penalty of propagating a carry the
lcngstlh of the 32 bit result. This slight discrepancy introduces an error of
=27

The next step is to multiply (2-b X Xo) by X, to form X,. The
same multiplication scheme is used as above. However, an additional
bias of 2-3 is added to the resulting product. The reason is to reduce the
absolute error of X, as is explained in detail in the Error Analysis sec-
tion. X, is the final result of the Reciprocal Approximation instruction
and is accurate to approximately 31 bits in the mantissa. These bits are
concatenated with 22 zeroes to form the full 53 bit mantissa and along
with the exponent are stored as a floating point number in the register
file.

Computation of X,

The X, approximation requires two passes through the Multiplica-
tion Unit. The first half of the final reciprocal approximation is done
using the already-present floating point multiply hardware and slightly
altering its function as shown in Fig. 2. Rather than doing a simple multi-
ply, the hardware is used to do an terate 1. The second half also uses
the multiply unit to do an lterate 2.

The equation for the final approximation is:
X=X, x(2~X, xb).

In the ZS-1, Iterate 1 is used to form (2 — X; x b) and this intermediate
value is stored in a general purpose floating point register. This value can
simply be called TEMP. The Jterate 2 instruction multiplies TEMP by
X, to form the final reciprocal X,. However, the way in which TEMP is
stored requires Jterate 2 to differ from a regular multiplication because a
transformation must be done on TEMP before the multiplication can take
place.

Iterate 1 - First Half Approximation of X,

The Iterate 1 instruction uses the Multiplication Unit as shown in
Fig. 2. The Iterate 1 instruction uses b and X, as its arguments to gen-
erate TEMP. First b is multiplied by X, in the normal fashion. The
result of this multiplication is a 64 bit number. Of the 106 bits which
result from a 53 x 53 multiply, 42 of the lower order bits of the product
are not formed for space and performance reasons. The effect this has on
the reciprocal calculation is shown in the Error Analysis section.

Next (2-Xxb) is formed. Again this is done by doing a one’s
complement, which adds little appreciable error.

Now, we note that TEMP, before being stored to a general purpose
register, should be a number close to one since it is an approximation of

2-X;xb (X;=1b). Infactit has the range:
1428428 78S TEMP >1-22-29

The derivation of this is shown in the Error Analysis section.
Equivalently, TEMP is represented in binary has one of the two forms:
1.0000000000000000000000000000x....
or
0.1111111111111111111111111111x...,
where x is either O or 1.

If the normalized mantissa of TEMP is 1.m mom; - - - mgymes then
bits m, through m; are largely redundant. These bits are either all 0’s
or all 1's. Bits myg through mg; contain the useful information needed
by the Iterate 2 instruction to form the final approximation.

63

If the result of TEMP were stored as a normal floating point pro-
duct, bits ms; through mg; would be lost, and therefore the error would
increase. However, instead of storing the result in the normal fashion as:

Islexo"'eolmlmz"' 'mslmsﬂ
It is stored as:
[T ew - e | mumy --- Mg 6300000 |

The redundant bits m,; through my, can be used to reconstruct the actual
TEMP since m, through m,¢ are always the same.

Note that 16 bits are "compressed” to make room for storing the
internal multiplier result. Though there are only 11 additional bits of
information available, a shift of 16 bits is implemented. The multiplier
used in the ZS-1 is only 11 bits more accurate than the register storage.
If the multiplier had even more internal accuracy available, other redun-
dant bits could be compressed.

Though not used in the ZS-1 implementation, the additional redun-
dant bits include m,; through mas (my must be kept to do the expan-
sion). Also, 10 bits of the exponent are redundant since its only possible
values are 2° (when TEMP 2 1) or 27! (when TEMP < 1) unbiased.
Finally, the sign bit is always a zero (positive). In all there are 26 redun-
dant mantissa bits, 10 redundant exponent bits plus the sign bit for a total
of 37 redundant bits. So, up to 37 bits could be used for storage of nor-
mally "lost” accuracy due 1o storing to a general purpose register.

Iterate 2 - Second Half Approximation of X,

The Iterate 2 instruction uses X; and TEMP as arguments to form
the result X, which is the final approximation of 1/b. This is shown in
Fig. 2.

Iterate 2 first expands the mantissa of TEMP back into a 64 bit
number. Then the expanded TEMP is multiplied by X, to form X,.
Recall TEMP =(2-b xX,;) . Finally, X, is rounded based on the
rounding mode back to 53 bits to be stored as the reciprocal of b. The
details of this rounding are discussed in the Error Analysis section.

As a possible alternative to this approach for Iterate 2, the follow-
ing scheme could be used. First, note that TEMP is expanded to fit the
64 bit input width of the multiplication matrix. The reason the multiplier
input is 64 bits wide is that it is built from 16 x 16 bit VLSI multiplier
chips. In other implementations of a floating point multiplier, a more
efficient design may limit the multiplicand widths to the width of the
mantissa. In such a situation, the lterate 2 instruction can be realized in
a different manner.

For cases where the redundant bits in TEMP are zeros, TEMP is
equal to 1+ ((2—-b xX;)— 1) x 2", where n = number of bits shifted
out by compression in lterate 1.

Rather than expanding TEMP prior to multiplication, simply multi-
ply it by X,. The correct product is generated by adjusting the bit posi-
tions of the partial products prior to their summation to compensate for
the shift done during the compression of (2 - b x X,) . The redundant
bits in TEMP can easily be forced to be zeros by controlling the error
bias when generating X, and also during lterate 1.

Error Analysis

Here, each operation done to generate the reciprocal approximation
X, is analyzed. All the errors introduced in each step are considered and
their effect on the final result is shown. This error analysis is used to
determine the best rounding methods. In each analysis, the largest possi-
ble error is calculated in both the positive and negative direction rather
than just the largest absolute error. The largest possible negative error is
referred to as €,;,, while the largest possible positive error is called €p,y.
Minimum error refers to the error closest to negative infinity rather than
smallest absolute error.

The direction of error is maintained in the analysis because it has a

bearing on the implementation of different rounding modes as is shown
later.

Error Analysis of X,
The error of the initial approximation &, is simply X — 1/b, the
approximated value minus the actual value. The crror analysis follows.

ex,=Xo- Vb
b-by-2"¢
R
@ -2"9

=== 4
@b +bx2% Y
‘Where:
2P 5x20, 275y > 27
The maximum and minimum €x,, occur at b=1, b’=1.
-15 _ -1
e, < w + 277
amx = (] 4 2716)
<15x27¢
©-279
€ > = =
Fomin ” (1 4 277)

X g > 15 X 2716

sx(mn

Therefore, 1.5 x 276 > g;_ > -1.5 x 276,
]

Using ROM interpolation, by assuming m ¢ is a one when generat-
ing the ROM values, has a distinct advantage over using truncated inputs.
As can be seen from the above equation, the error of the first approxima-
tion is balanced around zero. This results in the minimum absolute value
of £x, This is important because this error value becomes squared in the
next iteration as will be shown.

If we had simply assumed truncated ROM input values [1], our
equation would be:
1
X0m=?+[2’"(q'q,)]

e = L 407 - (- 9]
L P ﬁ +y

So,
X e < 270+ 27V = 125027

X ey > 0= 277 =127

Otrunc:

Therefore,
25x2M>eg, >-05x27¢

Even though the total range of the error is the same, the maximum abso-

lute value of the error is greater.

Error Analysis of X,

The first multiplication done in calculating X, introduces the fol-
lowing error terms:

0>¢r 2%

T2 5gp,>-272

The first of the error terms is due to the truncation of b to 32 bits, prior
to multiplication, and the second is due to the rounding of the product
b x X to 32 bits. The only error introduced in the second multiplication
is €73 which due to the rounding of the final product to 32 bits.

TR 50,5270

Also, as mentioned earlier, a bias of +27*! is added to the product.

Writing the equation for X, including all the error terms:
X, =Xox 2~ bxXg)

1 1 —
=(;+sxo)x(2—(b+e1~,)x(;+exo)—sn—2‘3')+t:n+23'

€
=(%+exo)x(l—ex°xb ——;—1—572—2'3‘)+e”+2‘31

15x 2718 > gy >-15x 276
0>er >-27%

22> ey £y > 272
Therefore, the error for the first Newton-Raphson iteration is:
ex, =X, - Ub
e (Erat 273
b? b
Now, we calculate the minimum and maximum values for Ex,!

=-b x (exo)2 - tepg 2

2*16 e (2*32 + 2~31)
o> b X (e + 27)
imn > 0 X e P20 b

-16
b2+b x 2716

The minimum value of this function in the range 2> b > 1 occurs at
b = 1. Therefore,

By > —(15 X 2719 - @2+ 27 + 27%

Sy >~ + 27

_ 32, o3

-31
> b x(22 % L2

Calculating the maximum error:

-31 =32 A3t
<0+ %._ ﬁ_z_%+2—32+2—31
The maximum occurs at b = 1

ey, <2+ 273 4 gy 23

1ma:
<2
Therefore the range of Ex, is:

2730 &, > -2+ 2%

Error Analysis of X,

The Iterate 1 instruction uses b and X, as its arguments to gen-
erate TEMP, First we multiply b times Xy, which introduces an error of
ery since the multiplication unit is not exact. Them (2-X, X b) is
approximated by doing a one’s complement operation. The complementa-
tion adds an error of 2753,

TEMP =2-X,xb - 2% -¢p,
‘Where:
2—63

>gp > -2

Now, calculating the and maximum values of TEMP.
TEMP should be a number close to one since it is an approximation of

1
2-X,xb (X‘=;).

TEMP =2 -X,xb -2% — ¢,

=2-b x(i—+sx,)-2"3—zp,

=1—2—63—b X€x1—€p1

Calculating TEMP ,,:
TEMP ax < 1= 27 — boux X £x, — €1,

<1=22842x@042% 429

<1428 428426

Calculating TEMP ;0

TEMP i > 1= 27 — boy, X €x, ~ €F1

>1-28_2x@2%-2%
>1-2%-2%
Since we can "compress” TEMP when storing it to a general pur-

pose register, no additional error is introduced due to the store.

The Iterate 2 instruction uses X; and TEMP as arguments to form
the result X, which is the final approximation of 1/b. Only one addi-
tional error (€f,) is introduced in this step, the floating point multiplica-
tion error. The range of this error is the same as 7.

26 5 gpy > 2792

Writing the equation for X, :
X,=X, X TEMP + ¢g;

1 1
=(+ex)x@2-b X(;+Exl)—2_63—e'r|)+€p2

1
=(;+ex)x(-b xey - 2% —er) + €2

b

1 26 & ,
'Z“exx_T_T"'Exl_b x (ex,)
- 2% x ey, —Ep X Ex, +Ep2

Simplifying and removing the insignificant terms, we have:

28 4 ¢
X2=l— F1
b b

The error of X, (ex 2) is:

+epp— b X (ex))

&, =Xy - 5
2%+ gp))
=——p ter-bXx (ex,)”
-2 + gp1) , tr1 En+2™)
=—b——+sp2—b X (b X (ex,) T b
+gp3 + 27302
-2 + €r1) x -2 €n1
= 4 gpy—b xX(-b x +yP - —
b ram b X b X (e Y
(er2+27™)

5 +epy + 22

65

The preceding equation ¢ all of the error terms introduced in
the reciprocal approximation.

By not performing compression on the Iterate 1 result, the same
error equation for €x, is obtained. However, in this'case:

295 gp, > 279

assuming round to nearest after Iterate 1. €, becomes by far the dom-
inant error term,

Rounding

Conceptuaily, rounding of X, to fit the 53 bit mantissa width is
done in two steps. First a correction is done to bias the error introduced
during the reciprocal approximation process. Next a round is done to fit
the mantissa to the 53 bit representation to be stored. Both the "correc-
tion" and "round” depend on the rounding mode and are done in parallel
during the calculation of X, .

To determine how the correction and round are done, we calculate
the minimum and maximum values of ey, Recall:

2% +epy)
O
The minimum value of this function in the range 2> b 2 1 occurs at
b =1, wheney =¢ey . . Therefore,

e > — (2 + 2763 _ 262 (270 4 272

& +epp— b % (e)

>—(2%0 4278 4 2784 276
>-14x2%

What this error value indicates is that after the final iteration, the
result internal to the multiplication unit could be low by slightly greater
than 13 but less than 14 LSBs. This is important to know when consid-
ering rounding to infinity, which must guarantee that the resulting
reciprocal is greater than or equal to the true reciprocal. The correction is
done by adding 14 LSBs (14 x 27) to the result, which will ensure
that the result is high. Then the round is done by adding ones to the 54th
through 64th bits so that a one in any of these bit locations will be pro-
pagated to the 53 bit.

Calculating the maximum error:

(763 _ 062
—@7-27)+2"3—b><(0)2

EX amax
This maximum occurs at b=1,

X <2

What this positive error indicates is that after the final iteration, the
result internal to the multiplication unit could be high by no greater than
2 LSBs. This is important for rounding to negative infinity, when the
result must be less than or equal to the true reciprocal. The correction
for round to negative infinity can be done by subtracting 2 LSBs
(2 % 275 from the result, forcing the result low. Then, the round is done
by merely truncating the 54th through 64th bits so that ones in any of
these locations will not affect the 53rd bit.

For round to nearest, we try 10 make the final result as close to the
actual reciprocal as possible. For the case analyzed here, we have a
result X, which has the following error range:

2x 20>y, >-14x2%

One might think that by adding 6 x 27%* to correct the final result prior to
rounding would be the best way to round to nearest. It is true that this
leads to the smallest possible absolute error, but it does not generate the
correctly rounded result the greatest percentage of the time. This is
because the error density through the range of ey, is not constant. In fact,

it was found through simulating this algorithm that the errors are
clustered around —1 x 2% and drop off rapidly on either side. This is
shown in Figure 3. We chose a correction which would lead to the
correctly rounded result the greatest percentage of the time. So in fact
the best correction for round 0 nearest is obtained by adding 2 to the
final result before rounding the mantissa to 53 bits. Then the round is
done by adding a one to 54th bit location which is one less than the LSB
of the resulting mantissa.

Experimental Results

In order to simulate the algorithm presented here, a program was
written in the C programming language. This was done prior to the com-
pletion of the hardware. We have since verified that the results of the
simulations agree exactly with the actual hardware results.

The following table compares the theoretical error limits as derived
in the Error Analysis section and errors found through the processing of
approximately two million random ber inputs. G ion of the ran-
dom numbers was donc using the C library function random() to form
the upper and lower halves of the mantissa.

Error Theoretical Value Experimental Value
€xo_, 15x2™® 14848 x 2 °° |
€x0., SI5xZ® ~14930%x2° |
X1, P 09396 x 20
Ex1, TR —08380x 2 ¥ + 2 %)
e, 2x258 12674 x 25
Exs ~14x2® -10.157 x 2%
TEMP ,, | 142 5+2 2425 14274272
TEMP 1255 1277

The error density prior to rounding, as found experimentally is
shown in Fig. 3. As can be seen the error is clustered between -2 and
-2,

Round to Nearest

Because we do not always provide the same result as with (IEEE-
like) infinite precision rounding, it is possible to generate a 53-bit
mantissa which differs by onc LSB from a true infinite precision rounded
result. However, the difference in accuracy between our result and one
with infinite precision rounding is actually much less than one significant
bit.

When X, is generated by the lterate 2 instruction, the error
analysis shows that the result internal to the Multiplication Unit which
has 64 bits of mantissa can be high by as much a 2 LSBs and low by as
much as 14 LSBs. Since the emror density is not constant through this
range, simulation was used to determine how to best "correct" the
mantissa prior to rounding. It was found that adding one LSB (275% gen-
erated the greatest percentage of results agreeing with the infinite preci-
sion rounded value.

For round to nearest, the correction is done by adding 27 to bias
the error. The round is done by adding a one to the 54th bit. If a one is
in this bit location, it will propagate up to the 53rd bit. Since the ZS-1
result can still be low by as much as 13 x 27 after the correction is
done, the 54th bit may be a 0 while with infinite precision rounding it
would be a 1. In this case, after rounding, the ZS-1 result would be one
LSB less than the infinite precision rounded result. However, in the
worst case, the differences in accuracies would be small. The bounding
worst case would be when the 54th through 64th bits of the true recipro-
cal are 2754 + 2760 4 7761,

In this case, the infinite precision round would add a one to the 53rd bit
gs3, so the error of this representation due to rounding would be:
£.= 258 - (2754 2% 4 26
=73 2%_ 28 = 40488 x 275

66

0.25 - |

0.15 -

0.10 -

RELATIVE OCCURRENCE OF ERROR

0.05 -

2 0 -2 .4 s 8
' X2 ERROR(x 2783

v y 0 v v v v T T T v

Figure 3: Reciprocal Error Internal to Multiplication Unit After lterate 2
(Prior to Correction or Rounding)

In infrequent cases (those on the far right of the graph in Fig. 3), it
would be possible for gs4 in the ZS-1 representation to be a zero. In this
case, nothing would be added to bit gs3, and the error of this representa-
tion would be:

€251 =—(2 %+ 27904 26 = 0512 x 25
Therefore, in the worst case, the absolute difference in accurac

between the ZS-1 round and the infinite precision round is 0.024 x 25
or 0.024 of an LSB.

»

This is the theoretical worst case. As can be seen from Fig. 3 the
instances of the ZS-1 approximation being this low are quite infrequent.

Experimentally, the maximum difference found was less than
0.015 x 272, or 0.015 of an LSB.

Round Nearest Error
ABS (€z5-1 — Eu)max

Theoretical Value
0.024 x 273

Experimental Value
0.015 x 2>

Round to +/- Infinity, Zero

Since the /terate 2 result can be low by 14 LSBs prior to rounding
to positive (negative) infinity, X, is "corrected” by adding 14 x 275 for
positive (negative) results. And, since the Iterate 2 result can be high by
2 LSBs prior to rounding to negative (positive) infinity, X, could be
"corrected” by subtracting 2 x 272 for positive (negative) results. Actu-
ally, this case is handled by biasing the error during fterate 1 so that
€x2 < 0, consequently no subtraction to correct the result is needed prior
to rounding.

For round to positive (negative) infinity for positive (negative)
results, ones are added to the 54th through 64th bits so that a one in any
of these bit locations will be propagated to the 53rd bit. When the ZS-1
result differs from an infinite precision rounded one, the ZS-1 is high
(low) by one LSB.

For round to negative (positive) infinity for positive (negative)
results, the S4th through 64th bits are merely truncated so that ones in
these bit locations will not affect the 53rd bit. When the ZS-1 result
differs from the infinite precision rounded one, the ZS-1 is low (high) by
one LSB.

Round to zero can be viewed as round to negative (positive)
infinity for positive (negative) results. We do not treat it as a separate
case.

Summary

The following tables summarize simulation data for positive results.
The method used here is compared to the result obtained if the mantissa
were computed to infinite precision prior to rounding. The following
tables summarize the differences found for the different rounding modes
comparing the ZS-1 result to the infinite precision rounded result.

(1) Round to nearest:

Correction | Same as « round | High | Low | % Differing
0 1997251 35 | 2714 0.138
7% 1998197 534 | 1269 0.090
d 1997583 1839 578 0.121

This confirms that the best correction for rounding to nearest is to add
276 1o the final result before rounding.

(2) Round to positive infinity (correct by adding 14 LSBs).
Correct | High | Low | % High
1977792 | 22208 0 1.11

Note that all results not agreeing with the infinite precision rounded result
are high by one LSB. This correctly produces an upper bound on the
exact result.

(3) Round to negative infinity (correct by subtracting 2 LSBs).

Correct | High | Low | % Low
1993883 0 6117 | 0306
Note that all results not agreeing with the infinite precision rounded one

are low by one LSB. This correctly produces an lower bound on the
exact result.

Conclusions

We have presented the reciprocal formation method used in the
ZS-1 prototype systems. A main feamre of our implementation is
enhanced accuracy over commonly-used methods. There are two ways in
which accuracy was improved.

(1) A ROM interpolation technique was used for computing table
values to minimize the absolute error of the first approximation.
As was shown in the Error Analysis section, the absolute value of
the error in X was reduced from 2.5 x 27 to 1.5 x 2716

(2) A "compressed” intermediate value was carried from the Irerate 1

to the Jterate 2 instruction.

To demonstrate the overall accuracy improvements from each of
the above techniques, we re-ran the error simulation experiments. In the
first case, we did not use ROM interpolation for computing table values,
but used truncated values, as is commonly done. The remainder of the
implementation was exactly the same as in the ZS-1, except the "correc-
tion" values used were adjusted to minimize the number of errors. In the
second case, we used an implementation that uses an Iterate 1 result that
is simply rounded and stored as a normal floating point number, rather
than in our "compressed” form. This models the algorithm used in the
Cray Research processors, but with the IEEE floating point format and
rounding.

The following table contains results for both sets of simulations:
the first uses ROM values based on truncated inputs and the second uses
a CRAY-like iteration method. Otherwise, the algorithms used in each
case are unchanged from the ZS-1 method. In all the simulations, the
same set of 2 million randomly selected operands were used. For com-
parison, results for the complete ZS-1 algorithm are repeated.

Method Same as o round | High Low % Differing
ZS-1 1998197 534 1269 0.090
Input trunc. 1993642 2185 4173 0.312
Cray-like 1596238 201663 | 202099 20.188

We see that using ROM values based on truncated inputs causes
over three times as many results to differ from the true infinite precision
rounded reciprocal. The Cray-like iteration method results in over 200
times as many results differing from the infinite precision rounded
reciprocal.

The following table contains the worst-case absolute value of the
additional error introduced by not computing the reciprocal to infinite
precision and performing a true round to nearest.

Method Additional Error
ZS-1 0.015 x 27
Input trunc. 0.031x27°
Cray-like 1.000 x 253

We see that truncating the input values used for computing the
ROM values leads to twice the added error than with the ZS-1 method,
and using a Cray-like iterate leads to additional error that is almost two
orders of magnitude larger than with the ZS-1 method.

Finally, all the discussion and analysis in this paper has concen-
trated on the formation of a reciprocal. Of course, a complete division
must also multiply the dividend by the reciprocal. When this is done,
additional rounding errors may be introduced by the multiplication. All
division by reciprocal algorithms require this "extra” floating point opera-
tion with its attendant "extra” rounding error, and the method described
here is no exception.

References

S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital
Systems Designers. New York: CBS College Publishing, 1982.

Cray Research, Inc., CRAY-1 S Series, Hardware Reference
Manual. Chippewa Falls, WI: Cray Research, Inc., Publication
HR-808, 1980.

S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M.
Powers, ‘“The IBM System/360 Model 91: Floating-Point Execu-
tion Unit,”” IBM Journal, pp. 34-53, January 1967.

A. E. Charlesworth, ‘*An Approach to Scientific Array Processing:
The Architectural Design of the AP-120B/FPS-164 Family,”
Computer, vol. 14, September 1981.

Intel Corporation, ‘‘i860 64-Bit Microprocessor,”” Order No.
240296-001, February 1989.

J. E. Smith, et al, ““The ZS-1 Central Processor,”” Proc. ASPLOS
I, pp. 199-204, October 1987.

D. Stevenson, ‘‘A Proposed Standard for Binary Floating-Point
Arithmetic,”” Computer, vol. 14, pp. 51-62, March 1981.

(1

2]

31

[4]

[5]
[6]

7

