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ABSTRACT

Incompletely specified numbers in the residue
number system (RNS) are defined with object to en-
able multiplicative inverse computation of a number
regardless to its magnitude. The introduced incom-
pletely specified RNS represents the general RNS
model in which completely specified numbers are the

special case. Two efficient algorithms for trans-
formation of incompletely to completely specified
RNS numbers are shown. Examples of their applica-
tion in divisibility testing and integer matrix
inversion are described.
1. INTRODUCTION
The residue number system (RNS) is a nonweighted

number system in which the presentation of a number
takes the form of a N-tuple X = (R1,%2,¢04,%y)
where x; = X modulo mj is the i-th residue digit
and my is the i-th modulus. If all m; are rela-
tively prime numbers, there is a unique representa-
tion for each positive integer in the

N
r? m; . For simplicity,
i=m

range X < M where M =

in this paper it is supposed that all mj
prime numbers. The main characteristic of the
is that from % = XY , where o denotes addition,
subtraction or multiplication, follows zj =(=xj°
©yj ) modulo mj . That means that these operations
can be done independently for each modulus and that
fast parallel computations can be realized [1].
When the moduli are sufficiently small, it is pos-
sible to realize residue operations with look-up
tables stored in ROM's. Addition, subtraction and
multiplication are called elementary operations
because they can be executed in only one parallel
memory access [2]. But this property is not valid
for integer division while RNS is not closed under
this operation. Moreover, integer division is nece-
ssary iterative operation and for its realization
much more hardware is required than for all other
operations together, and its execution time is in-
comparably longer [1],[5].

Besides integer division, in the RNS exists divi-
sion that can be executed as multiplication by the
multiplicative inverse element of the divisor. Such

are
RNS

division, named direct division in this paper, re-
presents the fourth elementary opsration in the
RNS. The result of the direct division is equal to

210

the result of the integer division if and only if
it is division with zero remainder [1].

The main restriction on the extensive use of the
direct division is the fact that the multiplicative
inverse element of a RNS number is not known for
the moduli in which the number has value "0". Be-
cause of that, direct division can be executed only
if divisor is relatively prime to M. In this paper
a RNS allowing direct division to be executed al-
ways regardless of the divisor's magnitude will be
introduced. Such system will be called incompletely

specified RNS (ISRNS) and the known RNS will be
called completely specified RNS to point out the
difference.

In the section 2 of this paper the definition of
the ISRNS is given. In the section 3 and 4 algo-
rithms for the transformation of ISRNS numbers to
the completely specified ones are presented and
finally in the section 5 some examples for the

ISRNS utilization are described.

2. DEFINITION OF INCOMPLETELY SPECIFIED RNS NUMBERS

Let us define that besides
for the i-th residue coding 0,1,2, .. /mi-2,mj-1,
there is an additional (mj+1)-th state "u"™ which
denotes an unspecified value of the residue digit.
A RNS number is said to be incompletely specified

mj "normal” states

if it can have unspecified values for some of its
digits and accordingly the ISRNS is defined as a
system in which it is possible to represent incom-

pletely specified RNS numbers.

In the ISRNS there is a unique representation for
each positive integer in the range X < M/My , or
each positive and negative integer in the range
X 4[(M/Mu-l)/2J where M, is the product of modu-

1i in which the number has unspecified value and
where |z] denotes the greatest integer less or
equal to z. My can be defined by
N 7
Moo= [ ] (my) (1)
i=1
where Ji is a binary variable denoting whether
the residue digit corresponding to the modulus
m; is specified (51 = 1) or not (Ji = 0).
Elementary residue operations on ISRNS numbers
are executed in the same way as on completely spe-
cified RNS numbers except that the result takes
unspecified value in the moduli in which any of

operands has
division can

unspecified value. In the ISRNS direct
be always executed because it is pos-




sible to assign the unspecified state "u" to the
multiplicative inverse element of "0". (Multipli-
cative inverse element of "u" is not "0" but "u"
itself) . After multiplication with such multipli-
cative inverse element, the final resulf of the
direct division becomes the incompletely specified
number with "u® digits in all positions in which
divisor has value "0". Direct division is the only
arithmetic operation which can generate the ISRNS
numbers from the completely specified operands.
Another way of generating ISRNS numbers is

possible in ,the case when transmissional or
computational errors can influence residue digits
{4]. In this case all illegitimate residue digit

codes can be treated as
resulting in a legitimate

unspecified state "u",
ISRNS number and allow-

ing to continue normal computations in spite of
encountered errors.
The use of the ISRNS numbers can be of great

practical value in division with zero remainder, in
error detection and correction systems and some
nonelementary residue operations if there exists
efficient way for transformation of the incomplete-
ly specified results into the completely specified
ones. In the next section a general algorithm will
be presented which enables transformation of the
incompletely specified numbers to the completely
specified RNS. In the section 4 an algorithm will
be presented enabling faster transformation in the

case when the starting and the resulting systems
have relatively prime moduli.
3. SPECIFICATION OF INCOMPLETELY SPECIFIED RNS

NUMBERS

The transformation of an ISRNS positive number to
the completely specified one, can always be done by
the well known base extension algorithm [17,(2],
[4]. This is not a suitable solution for the sys-
tems with great number of moduli because each pos-
sible combination of unspecified digits requires
distinct base extension hardware. Here is described
an algorithm for the transformation of the ISRNS
positive numbers to the completely specified ones,
using the same hardware regardless of the combina-
tion of unspecified digits.

The idea of the known base extension algorithm is
to convert the representation of a number to the
associated mixed radix system (MRS) and from it
then to compute the value of digits in additicnal
moduli. Number X is in a MRS represented by

N -l
X =ap+ y ayTy Ty = |
i=2

i=

B (2)
j=1
and the MRS is associated to the RNS if for all N
radices it holds r; = mj . Any RNS digit =y can
be computed from the MRS representation in N-1
steps of modulo operations realized by look-up tab-
les with two variables per table
Xy = <<(31 +ap'Ty)mod mg + a3-T3 ymod mg + .

+ 3N'TN> mod my . Conversion from a RNS to the
1
)

associated MRS is done by the known algorithm {1])

a; = x4 (3)
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X
aj =<i _— :>mod mj for i=2,...,N .
My My oo Mj_t
As the computation of aj; takes only i-1 steps
of modulo operations, the transformation from MRS
to the new RNS can be done in parallel, with one
step delay, with the RNS to the MRS transformation.

Because of that, the hole base extension algorithm
takes N steps of modulo operations.
Let us now define that the MRS is incompletely

specified if some of its digits can have unspecifi-
ed value. Some digit aj; has unspecified value if
its corresponding digit x; in the associated RNS
has unspecified value. The value of a number X
represented in a incompletely specified MRS (ISMRS)
is defined by

i-1 §,

N
J
X = dyrag+ > dyeapr¥y L, Yyo= [ (my) . (4)
i=2 j=1

Conversion from the ISRNS to the ISMRS can be done
again in N-1 steps of modulo operations and is
defined by following algorithm

ay = Xy (6)

X :> mod m
i
_—

§ §
hmn Lomg) 2ol (myg) 17

we (|

for i=2,...,N .

This algorithm is shown in the upper part of figure
1 with look-up tables marked by * . Functions
realized by the look-up tables of the j-th step
(j= 1,...,N-1) and for moduli m; (i = j+1,...,N)

are:
i g-1 7 ¥§,3-1 \
Xi,j = -—————;G——————- p mod mj (6)
I'4

if %3, 4.1 #u and ®; 4.1 #u, else

xirj = xilj-l

where Xi,0 = ¥j is the starting RNS representa-
tion of the number X . Digits of the number X
represented in ISMRS are:

aj = Rj,j-1 for i=1,...,N .

For the realization of this algorithm one needs
the same quantity of look-up tables as for the ori-
ginal RNS to MRS transformation algorithm. For
m > 2 , introduction of the additional state for
the unspecified state will not require additional
coding lines, so that the algorithm for the trans-
formation of ISRNS to the ISMRS is of the same
hardware complexity as the corresponding algorithm
for completely specified systems.

Such statement 1is not true for the MRS to RNS
conversion if it is done in the same way as in the
original algorithm

x; = {{{iyay + dyrap-Yy ) mod mj + (n

+33-ap¥admod my + .. + S yrag-¥y Y mod m; ,

because expressions for Yj are variables and
their value depends on all 25 (j < i). Direct im-
plementation of relation (7) would require addi-
tional inputs to look-up tables and would result in
growth of the necessary memory space.

Relation (4) can also be written as:
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Fig.t. Specification of incompletely specified
numbers
4 'S
X = dyrag + (m) Lo(8ya9 + (my)°2 (8)

4
'(Ja-a3 toeee 4 (myoy) N'IC‘N'EN 1) .

This relation can also be realized in N-1 steps
but in this realization additional inputs are not
necessary, because information about 4 is re-
quired only in the step when calculations with aj
are done. So, using relation (8), transformation
from ISRNS to any completely specified RNS can be
done with the hardware of the same complexity asg
the corresponding algorithm for the completely spe-
cified MRS. The only difference is that now trans-
formation starts with the digit ay so that RNS to
MRS and MRS to RNS transformations can not be dane
in parallel. It means that complete base extension
algorithm of an ISRNS takes 2N-2 steps of modulo
operations.

Conversion from the ISMRS to a completely speci-
fied RNS 1is shown in the lower part of figure 1
with look-up tables marked ** . Functions realized
by look-up tables for moduli m (i =1,...,N) are:
for the first step

aj,1 =(aN-1 + my.1-ay ) mod m;

if ay.; #u and ay # u
aj,1 ={ay)mod mj if aN.; = u and ay £ u
aj,1 ={aN-1) mod my if ay.y #u and ay = u
aj, 1 = u if aN.i =u and ay = u

for the j-th step (j=2,...,N-1)
aj,j =(aN-j + BN-j-ai, -1 Ymod my

if ay.j #u and aj,j.; ¥ u
aj,j =(aj,j-1 ) mod m;

if aN-j = u and aj, j.q #u
aj,j =(aN-jymod my if aNy.j # u and aj,j-1 = u
aj j= u if aNy-j = u and aj, j.1 = u

Digits of the number X
completely specified RNS are:
#j = aj N-1 for all i =1,...,N.
Obviously, the target RNS can be equal to the star-
ting RNS. If a number is uniquely defined in the
ISRNS then the described algorithm presents a way
for specifying its unspecified digits regardless of

their number and combination.

represented in the

Example 1:
In the RNS with moduli 3,5,7,11,13 the incomplete-
ly specified positive number X = (u,2,u,6,u) = 17

is given and it should be transformed to the com-
pletely specified one. The application of the
described algorithm is shown in figure 1 with
partial results after each step.

4. BASE EXTENSION OF INCOMPLETELY SPECIFIED RNS
NUMBERS

If a positive ISRNS number should be transformed
to the completely specified number in an auxiliary

N
RNS defined by moduli py,pp,+se,PR » P = rj Py
3=t

where M and P are relatively prime numbers, then
the algorithm presented in section 3 could be used
again. But there is another way in which conversion
could be done in only N+1 steps of modulo
operations.

Suppose that we have already transformed a number
X from the ISRNS to the associated ISMRS and that
instead of X we want to compute the value X-M,
in the completely specified auxiliary RNS:

N N £
KMy = (Sg-ap + D diag-¥) ([ ] (mj) ) (9)
i=2 i=t
5j N
+ Z Ji~ai'wi
i=2

N ?J
W, = T H (m3) .

j=i

N
X'Mu = leal H (mJ)
j=

Each digit of the number X-'M, in the auxiliary
can be computed by

s
(X-My) mod p; =({{§y-a;-(my) 2 + (10)

§
+dy-ap-Ty ) mod pi-(m3) 3 +

g,
+ 43-33-T3 ) mod pj-(myg) 44 ...
+ éN'aN'TN > mod p;
and from this relation we see that computation
starts again with the digit aj as in the original

base extension algorithm and that additional inputs
of the look-up tables are not required because in-
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Fig. 2. Base extension of incompletely specified
numbers
formation about Ji is necessary only in the step
when computation with a; is done. It means that
the described algorithm is of the same hardware
complexity and executable in only N steps as the

original base extension algorithm. The only diffe-
rence is that result in the auxiliary RNS is multi-
plied by M, . For completely specified RNS M,-=1
and the described algorithm is a real generaliza-
tion of the known base extension algorithm.

Value of the number X in the auxiliary RNS can
be obtained by division of the transformation re-
sult X-M, by M, . This division is executable in

only one modular step because it is division with
zero remainder and because M, is always relative-
ly prime with P. The number M, represented in the

auxiliary RNS can be obtained from look-up tables
in which all possible values of M, are stored.
Address inputs of the look-up tables are (i lines
generated as the additional outputs of the first
step of the RNS to MRS transformation. This algo-
rithm is shown in the left part of figure 2 with
look-up tables marked by ***. Functions realized
by look-up tables for moduli py ( i=1,...R ) are:

for the first step

aj,; =(ay +ay-Tp)mod p; if ay #u and ap; #u
aj,; =(az-Ty ) mod pj if a; =u and ap #u
aj,1 =(aj-mp) mod py if a; #u and ap = u
aj,1 = u if a; =u and a3 =u
j-th modular step (j = 2,...,N=1)

aj,j =(aj, j-1 *+ aj Ty )Inod Pi
if aj,j-1 #u and ay #u

aj,y =(ay'Ty mod py )if ay jog =u and aj #u
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ai’j =<ai,j_1-mj>mod pé q
if aj, j-1 =u and aj =u
aj, j = u if 3i:j-1 =u and aj = u.

Digits of the number X
ly specified RNS are:

represented in a complete-

Xy = aj,N-1 for all i =1,..4,R .

Example 2:

The incompletely specified number X = (O,u,u,4) =
= 15 from the RNS with the moduli 3,5,7,11 should
be transformed to the completely specified RNS num-
ber in the auxiliary RNS with the moduli 2,13,17.
The application of the described algorithm is shown
in figure 2 with partial results after each step.

5. APPLICATIONS
There are some obvious applications of the ISRNS
in division with zero remainder and in some error
detecting and correcting algorithms. In this sec-

tion its applications for divisibility testing and

general integer computations will be shown.
5.1. Divisibility testing

The task of the algorithm is to test if a positi-
ve number X is divisible by a positive number Y

without remainder, where X and Y are completely
specified numbers in the main RNS. The testing will
be done in the auxiliary RNS which satisfy condi~-
tions: P > M and P 1is relatively prime to M .

By employing the base extension algorithm, the
numbers X and Y can be represented in the auxi-
liary RNS. For every modulus m; of the main and

the auxiliary RNS, one g; line is generated indi-
cating that division in this modulus is possible
(gj = 1). Namely, in the case of y; = 0 and x; # O,
cne can immediately conclude that Y*X , what is
indicated by setting gy =0 .

If all g; lines are egual 1 then direct divi-
sions X by Y in the main and in the auxiliary
RNS are done. The results of the division in the
main and in the auxiliary RN§S, 2y and Zp res-
pectively, are generally incompletely specified
numbers defined by

Zy'Y = X + ky'M (11)
Zp:Y = X + kp'P
where ky and Kkp are smallest integers satisfy-
ing inequality
0K ky»rkp<yY. (12)
From (11) , (12) and the condition Y < M < P we
can conclude that ky = kp = 0 and Iy = Zp fol-
lows from Y|X , as well as ky = kp = 0 and YlX
from 2y = Zp . It means that Y divides X with-
out remainder if and only if the result of direct
division 1in the main RNS equals the result of di-

rect division in the auxiliary RNS.

Figure 3 shows the described algorithm for the
divisibility testing executable in N+3 steps of
modulo operations. With the use of the standard
base extension algorithm both X and Y are si-
multaneously converted to the auxiliary RNS (N
steps) and then divided (1 step). The result is an
incompletely specified number Zp, represented in
the auxiliary RNS, and g; lines (i=1,...,R}). In
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Fig. Divisibility testing

parallel to this operations, X 1is divided by Y
in the main RNS (1 step) and the result is an
incompletely specified number 2y , represented in
the main RNS, and the corresponding g4 lines
(i=1,++.,N). The number Zy can be represented in
the completely specified auxiliary RNS by the use
of the algorithm described in part 4 (N+1 steps).
In the last step values for %y and Zp are conm-
pared. The result of the comparison are cy lines
(i=1,...,R) which are set {cy = 1) if (zy); = (zp)j
or if (zp)j = u . If all c¢; and gy lines are
equal 1 then the divisibility of X by Y is
signalled.

Example 3:

Given the numbers X = (0,6,2) = 90 and
Y = (0,1,4) = 15 in the RNS with moduli 5, 7 and
11, test if Y divides X without remainder using
the auxiliary RNS defined by moduli 3, 13 and 17.
The result of direct division in the main RNS is
Zy = X/Y = (0,6,2)/(0,1,4) = (u,6,6) and its re-
presentation in the auxiliary RNS is Iy = (0,6,6).
Simultaneously, X and Y are converted into the aux-

iliary RNS and then direct division in that system
is performed
Zp = X/Y = (0,12,5)/(0,2,15) = (u,6,6) .

Because all g lines in both direct divisions
equal 1 and because Zp equals Zy in all the
moduli in which Zp 1is specified, it follows that
Y divides X without remainder.
5.2. General integer computations

The property of distinguishing RNS integer

arithmetic from weighted integer arithmetic is
possibility to compute the expressions like
X=X1+Xg+X3-Xy4-Xg correctly if X (((M-1)/2}, re-
gardless of the sequence of additions and subtrac-
tions and regardless of the magnitude of interme-
diate results. Similarly, it alszo holds for multi-
plication and division or any combination of all

the
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elementary operations if final result 1is integer
and if division is treated as direct division as
defined in section 2. If a series of operations
includes direct division, as for example in expres-

sion X = X kX2§X3 the result will be correct,
4" 45

regardless of the sequence of operations, if X is

integer satisfying the inequality

X gl(m -1 )/zJ , where GCD(a,b)
denotes greatest common divisor of a and b. The
result will be an incompletely specified number if
GCD(X4°Xg,M ) > 1 and then the described algo-
rithms must be used to transform it into the com-
pletely specified number.

It means that RNS integer arithmetic allows wun-

bounded magnitudes of the intermediate results that
can even be rational numbers if it is known in ad-
vance that the results are integers uniquely defin-
ed in the RNS. This property could be of great im-
portance in the various integer computations. The
result correctness is guaranteed and fast computa-
tions are insured due to the substitution of inte-
ger division by direct division. One example of
such computations is integer matrix inversion pro-
cess, in which all elements of the resultant matrix
are integers, when multiplied by the determinant D
of the starting matrix. Integer matrix inversion
process in the ISRNS, using Gaussian method, is
shown in example 4.

The algorithm for the transformation of the re-
sults to the completely specified RNS presented in
part 3 should be used in this application. But the
results can be also negative numbers and in the
case of implicit sign representation, according to
(3], value of M/M, should be subtracted from the
negative results after the transformation. Additio-
nal sign determination hardware and look-up tables
of all possible values of M/M, are necessary for
this operation.

One of the problems occurring in all RNS applica-
tions is the selection of the proper system which
will insure the uniqueness of the results. This

problem is especially difficult in the case of in-
teger matrix inversion because introduction of di-
gits of unspecified value can significantly reduce
the range of the uniquely defined results. The so-
lution to this problem is out of scope of this
paper.
Example 4:
[334
Given the matrix A = l5 6 7 in the RNS with
1654
moduli 3,5,7,11 and 13 compute the inverse matrix
A-t o, First, the computation in the rational decade
arithmetic will be illustrated and then in the RNS
arithmetic.
Start D=1 1. step D=3
(334 100 1 14/3 1/3 0 0
567, =>{010 0 11/3] =]-6/3 1 0
65 4 001 0 -1 -4 -2 o 1



2. step D=3 3. step D = -11
11 43 1/3 00 110 [-1 a/11 a/11]
0t 1/3|s| -5/3 10 01 0|>-2 12/11 1/11
00 -11/3| [-11/3 1 1 001 1 -3/11 -3/11
4. step D = -11
100 1 -8/11 3/11
ot1o0] » |-2 12711 1711] = a-!
001 1 -3/11 -3/11
Start D = (1,1,1,1,1)
(0,3,3,3,3) (0,3,3,3,3) (1,4,4,4,4) |
(2,0,5,5,5) (0,1,6,6,6) (1,2,0,7,7) | =
(0,1,6,6,6) (2,0,5,5,5) (1,4,4,4,4)
(1,1,1,1,1) (0,0,0,0,0) (0,0,0,0,0
» |(0,0,0,0,0) (1,1,1,1,1) (0,0,0,
(0,0,0,0,0) (0,0,0,0,0) (1,1,1,1,1)
i. step D = (0,3,3,3,3)

(u,1,1,1,1)
(u,0,0,0,0)
(u,0,0,0,0)

>

2. step D =

(u,t,1,1,1)
(u,0,0,0,0)
(u,0,0,0,0)

>

3. step D =

(u,1,1,u,1)
(v,0,0,u,0)
(u,0,0,u,0)

(u,1,1,1,%) (u,3,6,5,10)
(u,1,1,1,1) (u,2,5,4,9) |»
(u,4,6,10,12)(u,1,3,7,9)

(v,2,5,4,9) (v,0,0,0,0) (u,0,0,0,0)
(w,0,3,2,7) (u,1,1,1,1) (u,0,0,0,0)
(u,3,5,9,11)(v,0,0,0,0) (u,1,1,1,1)

{u,3,3,3,3)

(u,1,1,1,t) (u,3,6,5,10)

(u,1,1,1,1) (u,2,5,4,9)

(v,0,0,0,0) (u,3,1,0,5)
(u,2,5,4,9) (u,0,0,0,0)

(u,0,3,2,7) (u,1,1,1,1)
(u,3,1,0,5) (u,1,1,1,1)

>

(1,0,0,0,0)
(4,0,0,0,0)
(us1,1,1,1)]

{u,4,3,0,2)

(u,t,1,u,1) (u,0,0,u,0)
(u,1,1,a,1) (u,0,0,u,0)
(s4,0,0,u,0) (u,1,1,u,1)

(u,4,6,u,12)(u,4,1,u,11)(u,4,1,u,11)

>

> [(u,3,5,u,11)(v,2,3,u,7) (u,1,2,u,6)
(u,1,1,u,1) (u,2,1,u,8) (u,2,1,u,8)
4. step D = (u,4,3,0,2)
(u,1,1,4,1) (uv,0,0,u,0) (u,0,0,u,0)
{(u,0,0,u,0) (u,t,1,u,1) (u,0,0,u,0}) | =
{u,0,0,u,0) (u,0,0,y,0) (u,1,1,u,t)
(u,1,1,u,1) (u,2,5,0,4) (u,3,6,u,5)]
> [(u,3,5,u,11)(u,2,3,u,7) (u,1,2,u,6)"

(u,1,1,u,1) (u,2,1,u,8) (u,2,1,u,8)'
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After multiplication RA-1 by D and transforma-
tion to the completely specified RNS, the obtained
result is:
D=(t,4,3,0,2)
(1,4,3,0,2) (2,3,1,8,8) (0,2,4,8,10)
a-l.p = (1,2,1,0,9) (0,3,2,10,1)(2,4,6,10,12)
(1,4,3,0,2) (0,3,3,3,3) (0,3,3,3,3)
6. CONCLUSION
It is shown that introduction of ISRNS might be

useful in some RNS applications and that it is pos-
sible to realize efficient algorithms for transfor-
mation of incompletely to completely specified num-
bers. Accordingly, the ISRNS should not be treated
as the unusual modification of the RNS but as the
general RNS in which completely specified numbers
are the special case.

Although in this paper it is supposed that all
moduli are prime numbers, the presented algorithms
can also be used, without change, if the moduli are

not prime numbers. But in that case there 1is the
possibility that a residue digit is only partially
unspecified and the introduction of more than one

unspecified state per modulus might be necessary.
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