JANUS, an On-line Multiplier/divider
for manipulating large numbers.

Alain GUYOT!,Yvan HERREROS! and Jean-Michel MULLER1.2.

1L aboratoire TIM3-IMAG, INPG, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, FRANCE.
2CNRS, Laboratoire LIP-IMAG, Ecole Normale Supérieure de Lyon, 46 Allée d'Ttalie, 69364 Lyon Cedex 07.

Abstract.
This paper deals with the detailed VLSI implementation of a fast
bit-serial operator designed to perform very high precision (600
decimal digits) additions, multiplications and divisions, and

some of the applications of the circuit.

Introduction.

Our aim is to present a VLSI implementation of an on-line
multiplier/divider unit able to manipulate quite large numbers (up
to 600 decimal digits). On line arithmetic, presented by
Ercegovac and Trivedi in 1977 [6] is a digit serial arithmetic
where the digits circulate from the most significant to the least
significant. Digit serial arithmetic allows digit-level pipelining
(which enable fast computation) and circulation of data most
significant digit first is necessary in order to perform some

computations like division or maximum of two numbers.

Since in classical number systems the carries propagate from the
least significant position to the most significant one, on-line
arithmetic needs the use of carry-free redundant number
systems, like Avizienis's signed-digits systems [1] or carry-
save notation. Frequently, the radix chosen is different from 2
since a carry-free addition algorithm, due to Avizienis [1], may
be used in radix r # 2. For instance, the paste-up system ,
presented by Irwin and Owens in [15] uses radix 4. In radix 2,
carry-free addition is possible, but with two inconvenients : the
algorithm seems more complicated, and the delay is larger (see
[2] for proof). We shall show here that the first inconvenience
vanishes if we choose a good binary representation of the digits
in radix-2 signed digit notation, and we shall chose radix 2 for

our circuit.

106

The multiplier uses a three-input parallel adder, a three-input
serial adder and a one-digit multiplier which are described first.
The divider uses the multiplier to compute the least significant
digits of the partial remainder, plus four slices to compute its
four most significant digits in a nonredundant form. For clarity
reasons, the multiplier is drawn with three digits only, the
generalization to any number of digits is straightforward. Most
significant digits are at the left. Multiplication and Division are
performed following Ercegovac and Trivedi's algorithm [6].

A. Number representation.

Notation. To avoid the carry propagation delay in addition, a
signed binary digit (SBD) notation has been adopted. Each SBD
x, whichis T, 0o0r 1 is represented by a couple (a,b) of
negative and positive bits referred to as (-/+) such thatx = a-b.
So T is (1,0), +1 is (0,1) and O is either (0,0) or (1,1). To
change the sign of a SBD, one can either permutate its two bits
or logically complement them. This remark is worth a lot of
transistors since most of the elementary combinatorial operations
on SBD, like digit multiply or add, are increasing logic
functions and the simple restoring gates provided by the
technology are decreasing. This remark about change of sign is
also useful to change an adder into a subtractor without

changing any gate.

B. The operators

B.1 The PPM operator.

This operator computes d and € from its three-input a, b and
C, that gives either (a plus b minus ¢) or (C minus a minus b),
depending on the sign affected to the inputs ant the outputs. It is
used to build a carry-free parallel (2 gives 1) addition, a carry-

save parallel addition (CSA) (3 gives 2) as well as a serial
addition.

- - Y “b
PP bl g bt 4l u BT
d = aabvarCvbAT a4 I"bd i I"d°
PPM
e=a@®b®c b-l l—a d"[}—c
¢k * SR dhulh
Symbol cquations schematic

Fig. 1 The PPM operator

Parallel two-input adder

Sz

Fig. 2 A parallel two-input adder
In this adder that perform S=A+B+Cin, it is easy to verify that
the carry does not propagate longer than two positions and that

the weight and sign of bits are consistent.

Three-input carry-save adder.

A B Co A, B, C, Ay B, c,
AT it W s W wad U ad s T it M et B wd
- o+ - + - + - + -1+ - -+ -1+ - +

PPM PPM PPM PPM PPM PPM
+ - - +| |+ - = +) 1+ - - +
/+ I+ /4 —/+ /+ -r+
s s, s, S, s, sy

Fig. 3 A 3-input carry-save adder .
By combining the carry-free adder with this carry-save adder, a

three-input parallel adder is built with a delay of three PPM

boxes (i.e., 6 gates).

Most significant bits first serial addition.

2i 2i+l
D
A X o St
S b
i+1 i+2
—+& 2 1. & 2
B, *| % [, L s,
L R 2 A ¥ !
2|

Fig. 4 An on-line adder .

A and B are fed in serially, boxes labeled D are one cycle delays
(master-slave flip-flops). By combining this circuit with a one
SBD CSA and two boxes D, the three-input serial adder used in
the multiplier is built.

B.2 SBD multiplier.

A

bd[Jod b ¢

¢ = (anc)v(bad) a"i I”Ce a_‘i ?
f=Gavoe AL Y 24 b
€4 r. b d . c

equations schematic

107

Fig. 5 Elementary SBD multiplier.

The choice of radix 2 allows the product of two SBD to be one

SBD.

On-line multiplier.

In this picture, double wires carry SBD, while the boxes labeled
L are latches to hold digits of A and B. Before computation,
there are all cleared (set to zero). During computation a control
bit (token) runs backward to load serially the incoming SBD in
the A and B latches. The detailed timing of the serial
computation of A times B is explained on 3 bits in the table

below.

Guyot, Herreros and Muller

Serial

E Control Bit @ Start
Multiplier A
z1ED

Serial
Multiplicand B

Adder

Serial |__
Product ~

Fig. 6 On-line multiplier .

Cycld lncomingf Multiplicand) Multiplier Inputs of the parallel adder
numt bits latch laich (+ 2 timgs previous line)

0 0 0 0|0 00 0 0 0

1 a by {0 0 0|0 0 by| 0 0 by

2 ag by [0 0 a0 b hl| 0 ajby a;by+azby
3 ay bop |0 aj a |bg by by | agby agby+ajby abatahy

Table 1 Computation of AxB

Eventually, the product is computed as follows:
((((agb2)*2 +a1by +agby }*2 + a;by+aghy +aby)*2
+ a0b1+a1b0)*2 + aob()

Implementation considerations.

The circuit fig. 6 is assembled from three instances of the
identical SBD slice. By adding more slices a circuit for any
precision can be obtained, no resizing of the transistors being
necessary, since each slice communicates only with the next
ones, so the size of the slices can be kept small. Besides the non
recoding SBD addition is far less demanding for transistors than
the previous solutions known to the authors [10] and few costly
master-slave flip-flops are used. Altogether, each slice contains
32 gates and 152 transistors, so the 600 decimal digit (2048
SBDs) multiplier would cost a little over 300k transistors, with a
very high regularity.

3

108

B.3 SBD Divider.

We implement the algorithm of Ercegovac and Trivedi [6]. As
shown on fig.7 the divider consits of two parts. The right part is
the same multiplier as described in fig. 6. It multiplies the partial
quotient (signed) by the partial dividend, adding one bit to both
of them at each clock cycle, and add the signed result to the
partial remainder PR (without carry propagation on up to 2048
positions). The right part of the circuit propagates a carry on the
4 most significant positions of the partial remainder in order to
simplify comparisons, and from its value predicts the next SBD
of the quotient.The division algorithm is listed below. Let us
assume that there is a radix point between the two parts of the
circuit, i.e., the right part works on the fractional part of the
numbers while the left part works with the integer parts. This is
purely conventional since the divider does not have to know the
real weight of the digits. In the algorithm the divider is assumed
to be positive, each of its SBD as well as the result has to be

complemented if it turns out to be negative.

Algorithm [6]
While D <8 do D:= D * 2 + next SBD from divisor;
{ loop until the four bits known part D of the divisor is
big enough to ensure the convergence of the division
algorithm ,i.e., 7 < divisor< 16 or 8 <D< 15}
start multiplying ;
loop until dividend is exhausted
begin
get next SBD from dividend into multiplier ;
PP:= PR-220; {0 = false, 1= true}
PN:=-PR-220; .
next SBD of quotient := PN-PP;
{ PN and PP are the 2 bits of the SBD}
{ next SBD of quotient goes to the multiplier
and is output from the circuit }
PR := PR + incoming digits from multiplier +
next digit from divisor ; { IPR] <2*D}
PR:=2*
(if PP then PR -D else if PN then PR + D else PR) ;
{IPRI<2#*D-4)}

end;

Guyot, Herreros and Muller

4

@(__ I‘EI _@(start multiplying Control ¢ divider is ready é
b 2
o <
4 Y _J]
L [g
L , L),) g
Mult Mult @ k)
g
- i o
EERN
> Parallel ; Parallel Parallel | Parallel [{=>{ Parallel
Adder Adder Adder [Adder [Adder
s Lo
© L (E1 2]
'
Comparator for quotient selection]
Fig. 7 On line divider .
g,
C. Synchronization RN
From the on-line adder of fig. 4, the multiplier of fig. 6 and the X e
. «A\}es 9%&.[
divider of fig. 7 and a few switches, it is easy to assemble a -— request for
programmable operator which is slightly more complex than the by fifo result
divider and can perform any of the operations. This circuit is

designed to be controlled by a Transputer via the links. As in the
Transputer, the flow of data is regulated by a token that goes
backward to request for data.

operand 1
—

-
request

operand 2
e ——

result

Operator

Add/Sub/Mult/Div/Remainder f———

request

Tequest

Fig. 8 Regulation of the data flow .

The circuit is fitted with two fifo for the input operands to delay
one operand when the other is not yet available or when the
weights have to be aligned, for addition and subtraction. This
feature allows sharing of data.

Example. Let us compute (x+b)x (x is shared).

109

—_—
request result (x+b)x

not connected

Fig. 9 Example of data sharing .

It is easy to see that if the fifo is longer than the delay of the
addition, regulation for x in the multiplier is performed through
the adder. Duplication of data is allowed provided that it is used

to compute the same result.

D. Implementation and
performances.

We have already designed (as a test circuit) a 64 digit SBD
multiplier. The floorplan and the layout are given in Fig. 10 and
11. For each cycle, less than 10 gates are passed through. With
a delay of 3ns per gate, a frequency of 30MHz can be expected
that is 30 million digits of result per second. Provided that
enough circuits are pipelined and that numbers fit in up to 600
decimal digit, this figure is almost independent of the complexity

of the expression.

Frederic AUBRY
Jacques TAUGOURDEAU

e lff: ‘? :
1V e a5 e ip i
08 li0r i

1sion Nlimitee

rateur de Calcul

A

(.
L

s [t j :‘ .\:". At\b l :] A
e

Jean Michel MULLER
Alain GUYOT

IL N 1 1 It

LH;‘““ i muvrm (i{}.

Fig. 11 Layout .

—u 1T 1

III Bonding pads

T L AL
5EEEEEEEEEEERERE
sisisisislsisisisisisfsisisisis
55
£l

Fig. 10 Organization of the circuit .

110

[1]

(2]

{3]

(4]

(5]

(6]

7

[8]

References

A. Avizienis, Signed-digit number representations for
fast parallel arithmetic , IRE Transactions on electronic
computers, 10, pp. 389-400, 1961.

J. Duprat, Y. Herreros and J.M. Muller, Some results
about on-line computation of functions, submitted to the
9th symposium on computer arithmetic.

M.D. Ercegovac and T. Lang, A division algorithm with
prediction of quotient digits, 7th Symposium on computer
arithmetic, Urbana, Illinois, June 1985.

M.D. Ercegovac and T. Lang, On-line scheme for
computing rotation factors, 8th Symposium on computer
arithmetic, Como, Italy, May 1987, IEEE Publ. No
87CH2419-0.

M.D. Ercegovac, On-line arithmetic : an overview, SPIE
Vol. 495, Real time signal processing VII, pp 86-93,
1984.

M.D. Ercegovac and K.S. Trivedi, On line algorithms
for division and multiplication, IEEE Trans. on
Computers, Vol. C-26 No 7, pp 681-687, July 1977.
M.D. Ercegovac and P.K.G. Tu, A radix-4 on-line
division algorithm, 8th Symposium on computer
arithmetic, Como, Italy, May 1987, IEEE Publ. No
87CH2419-0.

A.L. Grnarov and M.D. Ercegovac, On the performance
of on-line arithmetic, Proc. 1980 Intern. Conference on
parallel processing, IEEE Publ. No 80CH1569-3, pp 55-
62, Aug.1980.

111

[9

[10]

(1]

{12]

[13]

[14]

{15]

{16]

{17}

V.C. Hamacher and J. Williams, A linear-time divider
array, Canadian Electr. Engineering Journal, Vol.6, No
4, 1981.

M. d'Hoe, M. Ph. Deleuze, A.
Vandemeulebroecke, P. Jespers and M. Davio, CASBA:
Cryptographic application using signed binary arithmetic.
ESSIRC'85 September 1985.

K. Hwang, Computer arithmetic principles, architecture
and design, New-York, J. Wiley&Sons Inc., 1979.

M.J. Irwin, An arithmetic unit for Online computation,
PhD thesis, tech. report UTUCDCS-R-77-873, Dept. of
Computer science, university of Illinois, Champaign-
urbana, IL 61801, May 1977.

M.J. Irwin, A pipelined processing unit for on-line

Pierre,

division, Proc. 5th symposium on Computer architecture,
IEEE Publ. No 78CH1284-9C, pp 24-30, April 1978.
M.J. Irwin and R.M. Owens, On-line algorithms for the
design of pipeline architectures, 6th symposium on
Computer Architecture, Philadelphia, PA, April 1979.
M.J. Irwin and R.M. Owens, Digit-pipelined arithmetic
as illustrated by the paste-up system : a tutorial, IEEE
Computer, pp 61-73, April 1987.

H. Lin and H.J. Sips, A novel floating-point online
division algorithm, 8th Symposium on computer
arithmetic, Como, Italy, May 1987, IEEE Publ. No
87CH2419-0.

J.E. Robertson, A new class of digital division methods,
IRE Transactions on electronic computers, Vol. C-7,

Sept. 1958.

