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Abstract: New optical representations and symbolic sub-
stitution(SS) rules are presented for performing high-radix
arithmetic in optics. A set of SS rules are proposed for
high-radix optical arithmetic, which satisfies the arithmetic
completeness property. Trade-off parameters like represen-
tational efficiency, projected speed gain, and estimated im-
plementation cost are analyzed. The SS mechanism to-
gether with the signed-digit(SD) representation reinforces
massive parallelism in optics. A digit-plane architecture,
blending very well with the SS technique and SD repre-
sentation, is considered for implementing high-radix arith-
metic. An optical adder, exploiting massive parallelism, is
proposed. The set of SS rules and their implementations
on a digit-plane architecture provide the basis to achieve
pipelining, systolization, and on-line arithmetic in future
optical computers.

1 Introduction

Optics has emerged as a promising technology for elimi-
nating the performance bottleneck of electronic computing
systems. The inherent parallelism, high speed, non interfer-
ing communication, and wide bandwidth of optics provide
a natural platform to perform high speed arithmetic com-
putations [6,7]. Optical arithmetic computations, promis-
ing a significant improvement in computing power over the
present day electronic computers, show hope for powerful
digital optical computers in the future. At this juncture of
arithmetic with optics, the field of optical arithmetic needs
attention from the computer arithmetic research commu-
nity for the successful realization of digital optical comput-
ers.

Recently, several researchers have demonstrated arith-
metic computations in optics using different number sys-
tems. The symbolic substitution(SS) technique proposed in
[3,8] has been adopted in the literature to carry out arith-
metic in optics. The signed-digit(SD) number representa-
tion, originally proposed by Avizienis (2], was introduced to
optics by Drake et al [5]. A number of symbolic substitution
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algorithms for optical arithmetic computations using SD
representations have been recently proposed [10,11,12,13|.
Residue number systems for performing optical arithmetic
have also been studied [4]. Optical parallel array logic
systems(OPALS) to carry out arithmetic logic operations
based on SS technique have been proposed in [14,15].

In this paper, we investigate the feasibility of perform-
ing high-radix arithmetic in optics. We present optical rep-
resentations for high-radix SD numbers. We demonstrate
that 2(r 4+ 1)% + (r + 5) symbolic substitution rules are suffi-
cient to carry out radix-r addition, subtraction, multiplica-
tion, division, and negation. Radix-4 arithmetic rules are
illustrated as an example. We analyze different high-radix
implementation in optics from the point of view of represen-
tational efficiency, projected speed gain, and estimated im-
plementation cost. We consider a digit-plane architecture
for implementing high-radix SD optical arithmetic. An op-
tical adder based on a digit-plane architecture is presented.

The rest of the paper is organized as follows. We first
represent high-radix signed-digit numbers in optics. Then,
we demonstrate the set of SS rules exhibiting sufficiency
in radix-r optical arithmetic. Different trade-off parame-
ters are analyzed to choose the suitable high-radix for op-
tical arithmetic. The digit-plane architecture is presented
together with the optical adder. Finally, we project the
potential of high-radix SD optical arithmetic.

2 Optical Number Representation

High-radix arithmetic in electronic computers [1] demon-
strate faster execution time compared to the binary case.
Several studies are available in the literature [16] for high-
radix arithmetic. In general, a string of { bits is equiva-
lent to m radix-r digits, where m = [lc_;ng' For practi-
cal implementations, r = 2* for some integer k > 0 and
I =m x k [9]. The signed-digit(SD) number system with
its inherent redundancy is ideal for implementing high-
speed parallel arithmetic [2,9]. In a radix-r SD number
system, the digit set 3, assumes 2a + 1 values, i.e. ¥, =
{-a,...,—-1,0,1,...,a}, where [%] <a<r-—1. The
absolute lower and upper limits of a result in minimal and
maximal redundancy digit sets respectively.



The two-level intensity(dark and bright) of light pro-
vides a natural mechanism for encoding binary data in op-
tical digital computers. High-radix digit sets can be easily
represented by grouping few pixels together. Both the min-
imal and maximal digit sets of radix-r SD number system
can be represented by a group of [log, r]+1 pixels as shown
in figure 1. Radix-4(8) digit sets require 3(4) pixels respec-
tively. As shown in figures 1 (b) and 1 (c), the group of
pixels (4 for radix-8) can have vertical/square organization.
This alternative representation leads to flexibility in imple-
mentation. The combination of all pixels being bright can
represent the don’t care(X) state. Alternatively, it can be
reserved for radiz point separating the fraction portion of
a number from the integer part.

Without any loss of generalization, in this paper, we
assume a vertical representation. Any m X n matrix of
single-digit radix-r numbers can be represented as a matrix
of (m([log, r]+1) xn) dark and bright pixels in optics. Fig-
ure 2 (a) shows an example of radix-4 representation. For
k-digit SD elements, the matrix can be separated into k
digit planes with attached weights r*~1 #¥-2 .. 0 Fig-
ure 2 (b) shows the optical representation of a 2 x 2 matrix
consisting of 2-digit SD numbers.

3 High-Radix Symbolic Substitu-
tion Rules

In this section, we emphasize on the concept of symbolic
substitution(SS) rules and its implementation in optics to
carry out arithmetic computations. We derive the basic set
of SS rules for radix-r arithmetic and show the complete-
ness property of this set of rules.

3.1 Basic Concept of Symbolic Substitu-
tion

The SS technique proposed by Huang [3,7] forms a mathe-
matical basis for several of the optical computing systems
being studied today. Since the data is represented as spa-
tial patterns (spatial arrangement of the digit-set as shown
in the last section) of bright and dark pixels, mathemati-
cal operators such as ADD, SUBTRACT, AND, NOT etc
can be represented as substitution rules specifying how to
manipulate these patterns. The symbolic substitution(SS)
can be defined [12] as a 3-tuple set S=(R, P, Q), where
R represents a one-to-one mapping from the domain P to
the range Q, R:P — Q. R(ry,r32,...,7n) is the set of SS
rules, where n is the total number of rules. P is the set
of search patterns P=(P,, P;,...,P,) and Q is the set of
replacement patterns Q=(Q1,Q32,...,Qn). Each SS rule,
ri,t = 1,2,...,n, can be defined as follows:

Q; ifi=j

"(P")={¢ ifi#s
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Figure 1: Optical representations of radix-4 and radix-8 SD
digit sets.

where, ¢ represents an empty pattern(a number of dark
pixels).

Figure 3 (a) shows an example of a SS rule. Here, the
mapping R represents the addition of two digits (2 and 2 in
radix-4 arithmetic) generating sum and carry digits 0 and
1 respectively. The LHS of the rule is the search pattern in
the input and the RHS of the rule is the replacement pat-
tern. Figure 3 (b) demonstrates the application of this SS
rule to an input plane generating the corresponding output
plane.

The SS rules for an arithmetic operator are derived
from the truth table specifications of that operator over
the digit set. We examine this aspect of SS in the next
section. The arithmetic operation in optics is carried out
by applying all the related rules to the input data in a par-
allel manner as shown in figure 4. The input data plane
is replicated and passed through the SS rule units. In the
first phase of symbolic substitution, each SS rule unit tries
to recognize its LHS pattern of symbols in the input plane.
Only, in case of a match, the unit substitutes the LHS pat-
tern by its RHS pattern. The output planes from different
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Figure 2: Optical representations for single and multi-digit
planes.

SS rule units are combined (overlapped) together generat-
ing the output data plane. For detailed implementation
of symbolic substitution rules, the readers are referred to
(3,12].

3.2 Rules for High-Radix Arithmetic

As suggested earlier, in this section, we derive the high-
radix SS rules from the truth table specifications of the
operators over the digit set. We consider the three funda-
mental operators NOT, ADD, and MULT. Considering the
division by repeated multiplication(convergence division)
[9], the above three basic arithmetic operators span the set
of arithmetic operations.

We consider the minimal redundancy digit set for
high-radix modified SD arithmetic. In a radix-r SD number
system, the minimal redundancy digit set Y, (min) consists
of r + 1 values [2]. With a minimal redundancy represen-
tation, addition/subtraction of two SD numbers is possible
in two steps by allowing the propagation of the transfer
digit over two digital positions to the left. This classi-
cal two-transfer addition scheme, proposed by Avizienis,
requires only three types of adder blocks(Type I, II, and
IIT). The truth table corresponding to type-I radix-r adder
block (z; + v = rt;+l + 1w, 1t:+1| =1 if |z +y| > %r,
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Figure 4: Optical implementation of SS rules.

xiayi1t:+l!w; € Er(min)) is of size (f’ + 1) X (T + 1) The
table represents all possible combinations of z; and y; over
the digit set consisting of (r + 1) digits. Each of these com-
binations can be treated as a symbolic substitution rule
from the {z; X y;} domain to the {t;,, X w;} domain. This
contributes (r 4 1)? S8 rules for type-I adder block.

The type-II adder block (w;+t; = rt;,, +w; , tfﬂl =1
if |uw; + ti] > L, w,t}sy, W] € T yminy and £} € {1,0,1}) can
be represented by a truth table of size 3 x{r + 1). Simi-
larly, the type-III adder block (s: = w: + t:’, w: € Lr(min)»
t; € {1,0,1}) also represents a truth table of size 3 x (r+1).
The only difference between the type-I and type-II adder
is the carry generation logic(carry=1 in type-II adder if
w; + t;| > 1, where as carry=1 in type-I adder if |z; + y;| >
%) Based on this logic, only 4 entries in the truth table
of type-II adder differs from that of type-I adder. This re-
quires 4 additional SS rules. By incorporating default 0’s
as the carry output in the truth table of type-III adder,
the truth table becomes identical to that of type-II adder.
Hence, (r+1)2+4 SS rules are sufficient to carry out radix-r
SD additions. The truth tables corresponding to type-I, II,
and III adders for radix-4 arithmetic are shown in figure 5.
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Figure 5: Truth tables for radix-4 adder blocks.

The SS rules corresponding to the first row of type-II adder
rules for radix-4 arithmetic are shown in figure 6 (a). With-
out any loss of generality, it is assumed that the two input
digits are represented by two consecutive vertical columns
in the input plane. Similar assumption also holds good for
carry and sum digits in the output plane. The organization
of input and output digits in SS rules can be modified to
match the implementation scheme.

The negation(NOT) operation is quite straight for-
ward in optics. It can be achieved by complementing(bright
replaced by dark and vice versa) the intensity of input
pixels. Radix-r SD digit set comprises of (r + 1) digits.
Hence, (r + 1) SS rules as shown in figure 6 (b), are re-
quired to implement the negation(NOT) operation. Fast
multiplication of two numbers X = za-1,Zn-2,...,%0 and
Y = Yn-1,Yn-2,---,Y0 is achieved by generating the par-
tial products p; = ¥ x X, (0 < ¢ < n —1) and getting
the weighted sum of the partial products [9]. The weighted
sum is carried out either by shift-and-add or by binary tree
addition. For binary numbers, the partial product p; is
generated in one step by bit-wise AND operation of the
multiplier bit y with the multiplicand X. For high-radix
SD numbers, the partial product generation can not be
achieved in one step. It can be easily verified that adder
circuits similar to two-transfer addition are essential for
generating partial products for high-radix SD multiplica-
tion.

We demonstrate such an adder circuit in figure 7,
where the conventional type-I adder blocks of two-transfer
adder are replaced by type-IV multiplication(Mult) blocks.
The Mult blocks perform digit-wise multiplication (2 x
2=10, 2x 1=0 2 in radix-4 arithmetic) generating sum and
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Figure 6: Optical SS rules for radix-4 arithmetic.

carry. The next two layers are identical to the adder cir-
cuits discussed earlier. The truth table corresponding to
type-IV Mult block (z; X y; = rt; b1+ Wi, |t:+1l = 1 when-
ever |z; X y;| > 3r) is of size (r + 1) x (r+1). This requires
additional (r + 1)? SS rules to incorporate multiplication in
radix-r arithmetic. Figure 8 shows the truth table for radix-
4 Mult block. The S8 rules corresponding to the first row
of the type-IV Mult truth table are shown in figure 6 (c).

The mentioned SS rules corresponding to addition
(type I, I1, and III adder blocks), negation(NOT), and mul-
tiplication(type IV Mult block) form the basis for all arith-
metic operations. Hence, these 2(r + 1) + (r + 5) SS rules
are sufficient for radix-r modified signed-digit arithmetic in
optics.

4 Cost-Performance Analysis

In this section, we consider different trade-off parameters
like representational efficiency, estimated implementation
cost, and projected speed gain for different high-radix arith-
metic in optics. The cost and speed gain parameters are
analyzed on a relative scale (with respect to binary arith-
metic) to compare the merits and demerits of high-radix
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arithmetic. Some of these parameters result in conflicting
requirements for a suitable radix usage in optical arith-
metic. Hence, the optimal choice of a suitable radix for
an optical digital computer has to depend on several other
factors like technology, application, and overall cost.

As we discussed in section 2, high-radix digit sets are
represented in optics by grouping few pixels together. Both
the minimal and maximal digit sets of radix-r SD number
system are represented by a group of [log,r + 1] pixels.
Though, these pixels result in 2/°827+11+1 combinations, few
of the combinations are used depending on the radix and
redundancy(maximal or minimal). On this basis, we ana-
lyze the representational efficiency(useful number of com-
binations/total number of combinations) for different radix
implementations. This efficiency parameter is directly re-
lated to the storage efficiency for data in optics. Figure 9
demonstrates this efficiency for different radix representa-
tions. From the graph, it is evident that maximal redun-
dancy digit set is efficient for high-radix arithmetic in op-
tics. But, lower radix implementation using minimal re-
dundancy set also promises comparable storage efficiency.
It can be also observed that radix-10 representation results
in very poor efficiency both for maximal and minimal re-
dundancy. Hence, radix-10 arithmetic is quite inefficient
from representational(storage) point of view in optics.
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Next we analyze the projected speed gain of high-
radix arithmetic over binary. Figure 10 shows the trade-
off of the speed gain. We have assumed the numbers to
be 64-bit(binary) for our comparison. Since we use modi-
fied SD arithmetic, the addition time is independent of the
radix. Radix-r multiplication of two n-digit numbers based
on shift-and-add scheme results in a speed gain of ﬁ

Tosgr

compared to binary multiplication. This gives almost a
log, r speed-up. At the expense of more hardware, the mul-
tiplication of two numbers can also be carried over by gener-
ating the partial products and adding them in a binary tree
fashion. Using radix-r representation, this scheme provides
a speed gain of I‘ﬁi‘]_é\;_—']', which is considerably smaller
compared to the shift-and-add scheme. Hence, high-radix
multiplication(shift-and-add) is favorable for optical arith-
metic. It is to be noted that, the speed gain, as shown
in figure 10, represents the gain by considering arithmetic
over two numbers. But, optics together with a digit-plane
architecture(discussed in the next section), has the poten-
tial to perform arithmetic over arrays of data in parallel.
Under this circumstances, the speed gain with high-radix
arithmetic will be significantly high.
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Since symbolic substitution units are the basic build-
ing blocks for optical arithmetic, we consider the cost of an
optical computer directly proportional to the number of SS
rules. Since, the technology for optical computers are not
matured, we consider the relative cost i.e. the ratio of the
costs of high-radix arithmetic to binary. Figure 11 shows
the relative implementation cost as a function of radix. The
cost being quadratic as a function of radix, does not appeal
much for high-radix optical arithmetic at the first sight. As
we mentioned earlier, optics has the potential for parallel
arithmetic over arrays of numbers giving rise to significant
speed gain for high-radix arithmetic. Hence, the increase
in cost associated with high-radix arithmetic is justified.
Trading-off the speed-gain and the high cost, it can be eas-
ily observed that high-radix arithmetic(radix-4, 8, and 16)
will win over binary in optics.

5 An Optical Arithmetic Proces-
sor

In this section, we consider a digit plane architecture for
efficient implementation of high-radix optical arithmetic
computations. Similar to the bit-plane architecture [12],
a digit plane architecture is proposed for high-radix arith-
metic to exploit the natural data-parallelism inherent in
data-intensive applications. Such applications include ma-
trix computations and image processing.

As we discussed in section 2(figure 2), an array of
data can be easily represented in optics by multiple digit-
planes. The array of data can be stored/retrieved to/from
optical memory as digit-planes. The processing(arithmetic
operations) can also be done in a digit-plane manner. We
explain this concept by demonstrating the architecture of
an optical adder. The SD arithmetic, as we discussed in
section 3, provides additional parallelism to the digit-plane
architecture in optics.
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The proposed adder as shown in figure 12 is based on
a digit-plane architecture, symbolic substitution, and SD
addition. The adder adds two input data arrays(A, B) and
produces the output data array(C). For high-radix arith-
metic, these data arrays can be stored in memory as digit-
planes (4",...,A% B",...,B% and (c™t?,...,C%. This
optical adder implements SD addition and is similar to the
two-transfer adder in [2]. The input digit-planes of A and
B are separated by the image splitter so that digit-planes
with similar weights ((A°, B%), (4%, B'),..., (A", B")) are
fed to the same SS unit. The three layers of SS units im-
plement the SS rules corresponding to type-I, II, and III
adders discussed in section 3.2. In the first step, the rules
of SS-I units are applied to the input digit-planes gener-
ating interim sum digit-planes {wg,wy,...,w,} and carry
digit-planes {tg,%y,...,t,}. Similar operations are carried
over in the second and third steps generating the digit-
planes(C™*2,...,C%). Finally, the image combiner com-
bines these planes to output the resuit data array C.

This optical adder demonstrates massive parallelism
in optical arithmetic. Different levels of parallelism in arith-
metic computations exhibited by the adder can be summa-
rized as follows:

1. Parallel arithmetic on an array of data using optics.

2. Parallel application of S8 rules within an SS unit to
perform arithmetic.



3. Parallel operations on digit-planes using high-radix.

The digit-plane architecture provides a basic frame-
work for high-radix arithmetic in optics. Since optical
arithmetic is carried out by SS rules on an input data
plane, the digit-plane architecture can be used to achieve
pipelining in optical arithmetic. This broadens the scope of
optical arithmetic to pipelining, systolization, and on-line
arithmetic.

6 Conclusions

In this paper, we presented optical representations for high-
radix redundant signed-digit code. We proposed a set of
O(r?) symbolic substitution rules to carry out radix-r opti-
cal arithmetic. We analyzed different trade-off parameters
like representational efficiency, estimated implementation
cost, and projected speed gain for carrying out high-radix
arithmetic in optics. High-radix optical arithmetic provides
speed gain over binary arithmetic at the expense of higher
cost (number of symbolic substitution rules) and lower rep-
resentational (data storage) efficiency. But, the speed gain
becomes multi-folded by performing parallel arithmetic on
arrays of data. This parallelism was shown to be achiev-
able by using digit-plane architecture and signed-digit re-
dundant code. This multi-folded gain balances out the
higher cost associated with high-radix optical arithmetic
and forces high-radix (radix 4, 8, and 16) arithmetic to win
over binary arithmetic in optics. We presented the archi-
tecture of an optical adder and demonstrated the feasibility
of digit-plane architecture providing a basic framework for
high-radix arithmetic in optics. The digit-plane architec-
ture combined with symbolic substitution and signed-digit
code has potential to incorporate pipelining, systolization,
and on-line arithmetic in optics. This promises a signifi-
cant improvement in computing power of the optical digital
computers over the present day electronic counterparts.
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