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Abstract

This paper examines the feasibility of higher radix float-
ing point representations, and in particular, decimal based repre-
sentations. Traditional analyses of such representations have as-
sumed the format of a floating point datum to be roughly identical
to that of traditional binary floating point encodings such as the
IEEE P754 task group standard representations. We relax this
restriction and propose a method of encoding higherradix floating
point data withrange, precision, and storage requirements compa-
rable to those exhibited by traditional binary representations.
Results from McKeeman’s Maximum and Average Relative
Representational Error (MRRE and ARRE) analyses, Brent’s
RMS error evaluation, Matula’s ratio of significance space and
gap functions, and Brown and Richman’s exponent range esti-
mates are extended to accommodate the proposed representation.
A decimal alternative to traditional binary representations is
proposed and the behavior of such a system is contrasted with that
of a comparable binary system.

Higher radix floating point representations, and in par-
ticular, representations using non-binary commensurable radices
have generally been eschewed by researchers and systems’ de-
signers as inferior to traditional binary floating point encodings.
The criticisms against such non-binary systems generally focus
on their algorithmic intractability and their relatively poorer error
performance vis-a-vis binary systems. However, the interest in
non-binary systems is not merely theoretical: conversions be-
tween floating point representations in environments in which
data are supplied, processed, and presented in different floating
point bases has a nontrivial computational cost and potential for
generating significant errors in conversion [20]. Itis proposed in
this paper that many of the algorithmic problems raised in earlier
research have become moot given new technologies, and that
methods of encoding higher radix floating point representations
exist that exhibit error performance comparable to that of tradi-
tional binary encodings.

Representation

Floating point representations may be viewed as a hybrid
form of scientific notation designed to offer considerable range
without the storage requirement that a fixed point encoding would
require. Therefore, an idealized view of a floating point represen-
tation [23] is of the form:

X = (s,e,f) = (1y*f*fr, (¢))

where,

B — base of representation

f — a base  magnitude

¢ — an exponent referenced to base B
s — algebraic sign, 0<s <1

Additionally, many floating point representations will specify
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that the significand, f, is encoded in a “normalized” format, viz.,
g > f > p 2)

and, further, n has been assumed to be zero, yielding significands
in the range (1,']. In binary systems, such forms possess an
inherent advantage in that the leading bit assumes the role of a
sentinel; i.e. it is not a meaningful datum, and therefore need not
be stored explicitly. Higher radices do not possess this conven-
ient feature since their “digits” donotencode integrally in a binary
storage medium. For example, if one assumes an encoding
analogous to that of a traditional binary representation, the leading
bits of a decimal significand (i.e. the exponent is referenced to
base 10) encoded in binary exhibit the forms:

Ax X X X L. X 1>f>1/, 3)
0% KT x 12>£2> 1/4, @
0015 %> 5 X, 1/4>£2 118, )
0001% 2 X, 1/8>£21/10. ®)

Given a fixed floating point word size, the explicit pres-
ence of the leading sentinel and non-significant zero bits obvi-
ously degrades the error performance of non-binary systems that
encode a floating point datum in such fashion. Some authors have
noted that a higher radix effectively allows the use of bits from the
exponent field in the significand field increasing its precision and
error performance. Such amethod, however, will generally try to
satisfy the equation

2 - g )
where

p>2,

i - binary exponent size (in bits),

j - base P exponent size (in bits),

to maintain a similar range of representation. The number of
higherradix exponent bits, j, would sensibly be chosen to be either
i-llog, log, BJ, ori- |—log2 log, B . For a decimal representation
such as the example outlined above, a similar exponent range
could be achieved by moving one or two bits from the exponent
field to the significand. The decimal significand must obviously
still store non-significant leading digits vis-a-vis the binary sys-
tem. Other researchers have shown that such an accommodation
will still yield error performance inferior to that of a binary rep-
resentation.

We propose in this paper an alternative method of encod-
ing a higher radix floating point datum that demonstrates error
behavior similar to that of a conventionally encoded binary
representation without requiring additional storage or suffering
significant reductions in exponentrange. In particular, the case of
a base 10 representation will be presented as an example of this
technique, and referred to as the Decimal Floating Point (DFP)
format. Our method allows that more sophisticated hardware and
algorithms may be necessary to process the proposed format.
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Figure 1. Proposed Decimal Floating Point Format

We begin by examining further the behavior of the
decimal significand shown above (3-6). From the perspective of
the worst case error, it is observed that four bits are used to define
only four different states of the significand. Further, these bits are
not used for storage of significant data, but only to hold place
value. It is proposed then, that the four possible states of the
significand outlined above be encoded as a single two bit field
within the floating point word. This field can be described as an
alignment field or auxiliary exponent. A proposed partitioning for
a single precision floating point word analogous to that specified
in the IEEE standard appears in Figure 1.

Sodefined, the DFP format will represent a floating point
datum, X, as

X o= (-1) % £ % 1079 % 203, ®

where qis a bias of 32 . It is also proposed, for purposes of error
control, that the DFP system be implemented with the radix to the
right of the significand. The digit complementation of the binary
auxiliary exponent, i, serves to preserve the integer ordering of
floating point words and the value of i is assigned for the possible
significand states as follows:

a) 1x X X X .. X, i=3  2e>f>2r!, ()
b 01k LR K x =2 222 (10)
c) Olep_lxp_szx e x, i=l  202>f22e% (11)
d) 001X 50K x i=0 203210, (12)

Since the binary exponent field scales the significand by less than
the base, the useful integer ordering (a)>(b)>(c)>(d) is preserved.
The size of the binary exponent also allows the DFP format to
carry a full 24 bits of precision within the DFP encoding. Because
the place value of the Isb is dependent on the auxiliary exponent,
i, the value of the “unit of the last place” [21] varies based upon
the value of i. This necessarily complicates the error analysis of
the DFP format, however, we demonstrate below results compa-
rable to an equivalent binary representation.

Non-binary radices other than decimal can also use this
technique by noting that an auxiliary exponent may be created for
any base by reserving log, log, B bits of the exponent for this
purpose. Base 10, besides its obvious interest, is particularly
amenable to this technique in that it gives up little exponent range
in its implementation.

Performance

In this section the performance of the DFP system is
measured by the traditional analyses of floating point systems.
Results from Matula’s examination of significance spaces [25,
26], Brown and Richman’s consideration of the chosen base and
exponentrange [6], McKeeman’s relative error analysis [27], and
Brent’s RMS error criteria [5] are extended to the DFP format. In
each case the performance exhibited by the DFP system is
compared with the expected result for the IEEE binary single
precision format.

Significance Space Analysis

‘We adapt Matula’s analyses [25, 26] of significance space
density and relative gap between constituents of a significance
space to the somewhat more unorthodox format of the DFP sys-
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tem. Use of these results, however, requires a more practical view
of the implementation of floating point representations. Specifi-
cally, practical systems are assumed to be implemented with
binary devices regardless of the logical base of representation.
This is the case when implementing the proposed Decimal Float-
ing Point format and Matula’s results will, therefore, be adapted
to such an encoding.

Matula [26] defines several concepts for evaluating the
relative performance of floating point representations of different
bases. He uses the term “significance space’ to denote the set of
representable real numbers for a given base and significand size.
Such sets disregard exponent range and are infinite. The density
of membership within a finite range, however, is different for each
base and significand length considered and a finite membership
ratio of two different bases [26] is, therefore, posed as

1
{dldesg, ﬁsldlsM}

|3
2 = lim - , ©)
Isgl Mo {blbesg, i SIbISM}
~ 2(2loggM+g,) (3-1) 8™
= lim ) e, lep1 <2, (10)
M>= 202 logg M+ &) (B-1) B"
where SE = Base B, n digit, significance space.
Completing the limit of eq. (10) [26], we see
G-)8&™!
= ——n—l log5|3, (1 1)
B-1p

but applying this formula to the IEEE format and the DFP format
is somewhat problematic in that the DFP system is not defined
with a specific number of decimal digits. If one ascribes meaning
to a nonintegral number of digits, log, ;2% can be substituted as a
reasonable estimate. Evaluating eq. (11), then, produces the
disappointing result of .5418.. or a significance space only 54% as
dense as that of a comparable binary system. Signifance space
density, then, if accepted as a valid measure of the static error
properties of a floating point representation, appears to depend on
the magnitude of the base as well as the precision of the signifi-
cand. Binary systems obviously optimize the former criterion.

Equation (11), however, does not address the increased
density made possible by the use of an auxiliary exponent. Inthe
proposed system, 24 significant bits of precision are always
retained. This has been accomplished by absorbing leading zeros
and the implicit msb in the auxiliary exponent. Re-examining
then, the derivation of eq. (11) [26], one sees that the terms
(6-1)8™" and (B-1)B™* describe the number of significand states
that are assumed over the intervals (8',§'] and (B',p+!]. Consider
then, encoding a base B system on J state devices, where B>, and
an auxiliary exponent of adequate size preserves the trailing bits
of the significand. The number of significand states for such a

system is, then,
sm-b{lo gsBl ]

B
and, for a base B system imlemented on 8—ary devices, eq. (10) is

recast in the form:
5rn+|.lo g giJ :| )
B

LlogsB] 8™ + [8’“ -

2 (2logs M+ ;) (5-1) 8™

lim
M—seo

2 (2 loggM + &) (LlogsBJ ™14 [sm -



loggP (6-1)

= . (12)
LlogEBJ +5— 81+Llog58_}-log§

Evaluating this result for the DFP format (specifically, 8=2 and
B=10), the ratio of significance space density is .977, indicating a
more populous distribution of significands under the proposed
format. This may initially seem counterintuitive, however,
Matula’s analyses evaluate the behavior of infinite sets and do not
examine the effect on exponent range as do, say, Brown and
Richman [6] below. Figure 2 depicts the behavior of eq. (12) with
8=2 and P the independent variable. We consider the unusual
behavior of (12) further after adapting Matula’s relative gap func-
tion to include the DFP format.

Matula’s relative gap function describes the relative dis-
tance between constituents of a significance space:

min {blb>x,be SE} — max {blb<x,be Sg}
X

Tjx) = (13)

»

and, when plotted, provides a convenient visual model of the
behavior of different significance spaces. To address the DFP
format, however, the range of significands must be considered as
four separate intervals. This is necessary since the value of the
“unit of the last place” [21] differs based on the state of the
auxiliary exponent. From the decimal example above, the pos-
sible significand states are:

a) Ix X X X .. x, =3 2e>f220, (14)
b ok LXK x =2 2Rl (15)
) 001X X X X ... X, i=1 202>f2203, (16)
d) OOlep_lxp_zxﬂx g Ko i=0 2035220310, (17)

where the place value of x, is: 1 in case a), 1/2 in case b), 1/4 in
casec), and 1/8 in case d). *he relative magnitude of x, however,
remains a constant 2. The relative gap function for the DFP
format, then, is a sawtooth function similar to that of acomparable
binary system. The discontinuities occur, here, at 10%, 102, 10/
4, and 10%/8. Figure 3 depicts this behavior for a p bit DFP system
and a comparable binary system on a log-log scale.

Figures 2 and 3 possess several interesting features. It be-
comes obvious that the relative gap functions for p bit binary and
DFP systems, while exhibiting different periods, have identical
maximum and minimum values. It can also be seen that the
relative gap of the DFP system will periodically reach a disconti-
nuity other than at the point of maximum relative error. This
minor cycle naturally occurs because a denormalized DFP signi-
ficand begins at the point 2¢/10 instead of at an integral power of
two. This discontinuity somewhat obviates the earlier result with
respect to significance space density in that the “average” relative
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Figure 2. Significance Space Density Ratio — eq. (8), 52
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Figure 3. Relative Gap of DFP and Binary Representations

distance between elements of the DFP is system is a bit less than
a comparable binary system.

The minorcyclein the gap function of the DFP systemcan
also be used to further elaborate on the phenomena observed in
Figure 2. Figure 2 has two curious features. The first of these is
the periodic behavior exhibited as the base approaches a power of
two. From Figure 3, it is apparent that the distance from the
maximum or minimum point at which a minor cycle occurs is
determined by the proximity of the base to an integral power of
two. Bases slightly less than a power of two will have a minor
cycle almost as large as a major cycle, and, therefore, will exhibit
average error performance nearly equal to that of a binary system.
Similarly, bases slightly greater than a power of two will have a
minor cycle of negligible size and will also have average error
performance comparable to a binary system.

The second feature of interest in Figure 2 is the apparent
trend towards diminished utility for higher radices. Figure 3
demonstrates graphically that a higher radix will insert minor
cycles into the gap function less frequently and diminish their
effect on the average error performance of the representation.
Therefore, the minor cycle interposed in the gap function in
systems using an auxiliary exponent has the beneficial effect of
reducing the average relative error.

We infer from these results, then, that the utility of
systems employing an auxiliary exponent is diminished in sys-
tems with large radices or systems in which the radix is in close
proximity to an integral power of the base implementation.

Exponent Range

Brown and Richman [6] examine the choice of floating
point base by considering the exponent range available to systems
of similar accuracy and word size. Our nomenclature is temporar-
ily adjusted to match the authors’, viz.,

N - floating point word size, exclusive of sign bits

r — number of storage device states on which a floating
point word is encoded

B - the base of representation

q - the number of r state devices used to encode the
significand

o

- log, B, where B=r.

The authors’ use of the term mantissa is also acknowledged as
synonymous with the more contemporary term, significand.

The accuracy of floating point systems is measured by
Brown and Richman with a maximum relative error criteria. Ina
q device base B=r' system, the error function, &, can be represented
by either a maximum relative gap criteria, or a maximum relative
error function. Both exhibit proportional behavior (relative gap is
generally twice the relative error), therefore, either concept can be
employed.



Exponent range, E(q,i), is essentially defined by the bits
“remaining” in a floating point word after the significand and
signs have been allocated. In an N, r—state device base f3 floating
point word with q “digits” of significand (mantissa), the exponent
range is

E(gd) = i¢" - 1), (18)
allowing exponents in the range r¥39 to 1849, Sensible designs
will assure gi.

By definition, floating point systems of the form (g,r’) and
(g-i+1,r) will have comparable maximum relative error (or gap)
since an r' representation will potentially have i—1 leading zeros
and require the same number of additional significand bits to
achieve a comparable worst case error [27]. Exponent range,
therefore, will be diminished and can be compared by considering
the ratio of the expbnent range functions,

Eq#LD _
E(q,i) T

l_rl—l

P il
AR S

Systems with base B = r, where i>1, have a reduced exponent
range to achieve accuracy comparable to a system in which B =r.
Thereduced exponentrange is necessarily implied by the fact that
there may bellog ﬁJ leading zeros in the significand. This, in turn,
requires greater significand size to achieve maximum relative
error properties comparable to a smaller base. The extension of
the significand must naturally come at the expense of the expo-
nent. Table 1 [6] lists values derived by Brown and Richman by
applying eq. (19) to different base and device size combinations.

19)

Adapting Brown and Richman’s analyses to the DFP
system requires consideration of its unusual format. In general, a
string of leading zeros in a significand can be changed from a
unary encoding to a more compact r—ary encoding by adding an
r-ary auxiliary exponent. Therefore, eq. (18) can be recast such
that the storage base rand the exponent base 3 need not necessarily
belong to the same commensurable family, viz.,
E'(@q,B) = logf HNarlog log ) E(q,) (20
From the previous examination of Matula’s gap function,
it’s seen that given an equal number of base r significand devices,
one can achieve identical maximum and minimum relative gap for
different bases if an auxiliary base r exponent exists to account for
nonsignificant leading base r “digits” in the significand. The
exponent range ratio of eq.(19) can, therefore, be recast as:

E(gn) _ A

- rlogrlogrB - Llog,log,ﬂ_].

: = 21
E@P 1y p fN-artoglog 8]
It therefore follows that
E'(q,1)
1< <r, 22
E (an ) T ( )

and the somewhat more pessimistic results of Table 1 can be

r=2 implicit r=2 explicit r=3 r=4 r=10
1 2 2

r 1.5 5
r 1.33 2.67 3 533 33.3
r 2 4 6.75 16 250
r 3.2 6.4 162 512 2000

Table 1. Brown and Richman’s Ratio of Exponent Range

131

rejected if an appropriate encoding exists and binary devices are
employed.

Given, then, the presence of an appropriate auxiliary
exponent, as in the DFP format, the impact on exponent range
from the use of a higher radix can be limited to a factor of r! of the
ideal. For practical systems (i.e. those implemented on binary
architectures), the worst case penalty is a 50% decrease in expo-
nent range when compared with a conventional binary floating
point representation. In practice, the figure derived from eq. (21)
for the DFP system and a comparable binary system is approxi-
mately 1.19.., or, the DFP system achieves approximately 84% of
the exponent range of a comparable binary system.

Relative Representational Error

Inthis section, the analyses of McKeeman [27], Cody [9],
and Hwang [17] are extended to include the DFP format.
Specifically, the Maximum and Average Relative Representa-
tional Error (MRRE and ARRE) properties of the Decimal Float-
ing Point System are examined.

Toevaluate the MRRE, consider an arbitrary real number
x and the floating point representation to which it maps, x* = £ B=.
The difference between x and x* relative to the magnitude of x
gives the relative error in representing x with x*. The MRRE
divides the absolute representational error by x to negate the effect
of the exponent and to produce a percentage or relative error
statistic. Thus stated,

x—x* }
~ |
If x is an arbitrary real number within the range of
representation of a floating point system, then the mapping of x is
bounded by y* and z*, where y* <x <z*, and z* is succ(y*) within
the representation. Maximizing the difference between x and x*,
and further, assuming the mapping is the best possible, the
maximum difference can be approximated by (z*—y*)/2. Simi-
larly, the denominator of (23) can be approximated with y* since
the difference is less than 1 unit in the system of representation.
Equation (23) can, therefore, be approximated by

MRRE = Max[ 23)

f . o f, * ©
- Max| 2P 5B @4
2f,p%
= (25)

[ ((f,» + 1 "unit of the last place")B%) — £,
2 £, B

where a “unit of the last place” [21] is the arithmetic difference
between two adjacent significands. The definition of the term
“unit of the last place” (or ulp) in the numerator derives from that
of the significand in the denominator. In a system using n
significand states (where n is generally assumed to be some
integral power of the base of implementation) and a normalized
significand range of a > f 2 b, the ulp is defined as a/n. For typical
binary cases (i.e. 1 >f2 1/2) the ulp is 2#, where p is the number
of bits allocated to the significand.

Maximizing (25) is clearly a function of the minimum
value of the significand of the denominator. If a normalized
representation in the range 1 > £ 2 B~ is assumed, the denomina-
tor of (25) becomes 28!. For conventional encodings, then,

_lulpB
=
If a binary commensurable base [26] is employed (e.g. B=2, 4, 8,

(26)




16, etc.), and the above outlined normalization applied, the ulp is
2, where p is the number of bits allocated to the significand.
Conventional binary commensurable representations will, there-
fore, have an MRRE of 27'B = 2?. Binary systems that use an
implicit msb for the significand obviously have more significand
states. The ulp for such systems is 2”7 and the results above can
be reduced by one half.

In the DFP system it is observed that the MRRE can only
occur at one of three possible significand states, specifically,
when the magnitude of the significand is at a minimum. This
corresponds to one of the forms; 1000..., 01000..., 001000...,
recognizing that the leading nonsignificant bits are stored in the
auxiliary exponent and the place value of the “unit of the last
place”[21]isdecreased by 1/2ineachcase. Applying McKeeman’s
analysis, it can then be concluded that the MRRE for all these
points is 21, identical to the binary representation.

The ARRE is derived by assuming that significands are
distributed with the reciprocal density derived by Hamming [15)
and Benford [4] and extended by others [2, 7]. Specifically,

1
ARRE = [, PG Q) d, @n
B
here P(x) = —0—, Qx) = - (28, 29)
where P(x) = Xinp’ X) = R

P(x) is the reciprocal probability distribution for significands
[15], and Q(x)is the uniform relative error in representing a real
number x on the interval (27,2°/B]. In statistical terms, (27)
evaluates the expected value of |3], the magnitude of the relative
error. To derive this measure for the DFP system, it is necessary
to again divide the range of the significand, (2°,2¢/10], into four
subintervals corresponding to each of the auxiliary exponent
states. The ARRE for each of the intervals (2°,2¢/2), (2¢/2,27/4],
(2°/4,27/8], and (2%/8,2°/10] is examined separately. The ARRE
for the DFP system, then, can be described as:

T T
j;"_:; xLnf 32x + J;;»—B xLnf 16x dx + G0
2?‘1 2P
11 1 1
Lﬁmﬂd’”bﬂm ax &
" 31
2(p+4) Ln

The uniform error on each subinterval is decreased by a factor of
two by virtue of the auxiliary exponent. Substituting B=10in eq.
(31), and evaluating (27) for a binary system, aratio of the ARRE
can be calculated for the DFP and binary systems,

13
ARREpgp 271410 13
ARREZ = 1 = T I_Oglo 2 = .978.
2(p+2) Ln?2

Therefore, by the Average Relative Representational Error crite-
ria, the Decimal Floating Point format appears to represent an im-
provement over the best forms of binary representation.

Relative Variance

Brent’s analyses of floating point representations [5] are
made relative to a logarithmic system of similar precision. He
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develops two statistics, both ratios of error in a floating point
system over that of an equivalent log system. The first of these is
simply a ratio of maximum relative error. He shows that the
maximum relative error in the log system is the theoretical
minimum that can be achieved by any floating point system. Itcan
be noted, however, that the DFP system has been shown earlier to
have worst case behavior comparable to the best binary systems.

The second statistic advocated by Brent is motivated by
the observation that the MRRE is a pessimistic measure of the
representational error inherent in a given representation, i.e.
representational errors are generally tend to cancel one another
out in a computational process. He presents several simulations
that lend credibility to this argument. Brent prefers to consider a
root-mean—square (RMS) measure of error in floating point
representations as a basis of comparison. Again, Brent evaluates
the RMS error against that of the log system. The log system,
however, provides no theoretical minimum for the RMS error, as
was seen for maximum relative error. Therefore, results based
upon an RMS type of analysis are most useful in direct compari-
sons of representations employing different bases and encodings.

Brent (and Kaneko and Liu [22]) use the distribution for
the uniform error and the reciprocal distribution of significands to
develop a distribution function for the relative error. We prefer to
calculate the second moment of the magnitude of the relative error
directly since it closely parallels the development of the average
relative error statistic above (27). It can be assumed that §, the
relative error, is uniformly distributed with mean (approximately)
0. The root function will be ignored since it is a ratio of statistics
for the DFP and the equivalent binary system which is of interest.
The second moment (or mean—square) can be defined for the DFP
system as

27 ) 272 )
[z 0@ @Pe+ [ Pw@@re + G2
10
2P ) 2P )
[P0 @ ax + [ P @u?ax
where (Q ) = zsz, QP = 261,8’
1 1

Q@) = S Q") = NTxt

153
= 22p+9LnB (33)

and P(x) is the reciprocal density function described above (28).
It can be noted that this technique of calculating the second
moment of the relative error will differ from Brent’s by only a
constant factor. A direct comparison of bases will therefore
remove this bias.

For more traditional floating point formats (i.e. without
an auxiliary exponent for higher radices), the second moment can
be derived as

B?-1

' 1
J.% Xh’lB 22p44x2 22p+5mB'

Comparing the DFP format to the traditional binary format for
equal precision,

(34

153
S d 2p+9
ms(AfD) _ 2% 10 _ 1532 _ ™~ 35)
8s(2) _ 3 161n 10
22512



an analysis similar to Brent’s shows the proposed DFP format will
again appear to outperform the traditional binary implementation.

Implementation

In our decision to employ a higher radix floating point
representation, such as the DFP format, we have allowed that
additional hardware and modifications to traditional algorithms
will be necessary. In this section we outline arepresentative ALU
implementation capable of processing DFP encoded data.

Adding the ability to process DFP encoded data to a
floating point ALU requires the addition of several data transla-
tion functions and arithmetic operators. We propose that DFP
encoded data be processed in an unpacked format similar to that
of conventional binary floating point data. The auxiliary expo-
nent is removed and the leading bits of a DFP datum are restored
as it enters the floating point processing unit and a converse
operation is performed when a datum exits the floating point
ALU. Figure 4 depicts the proposed internal representation. This
format is similar to the decimal significand format proposed by
Fenwick [12]. To preserve the error control properties of the DFP
format, all arithmetic operations are carried out to p+4 bits of
precision (for p bits of DFP significand) to accommodate the
potential leading zeros and the msb of a decimal significand.

With a few exceptions, arithmetic processing of the
decimal significand is identical to that of a binary equivalent. All
the normal binary algorithms (addition, subtraction, multiplica-
tion, division, complementation, and ordering) are applicable to
the decimal significand data. Prealignment of operands (for
addition and subtraction) and postalignment of arithmetic results
(rounding and normalization) will require that a decimal signifi-
cand (or other higher radix, if such is employed) be scaled by the
base. The scaling of a significand by a base other than binary,
however, requires the addition of data path operators that will
multiply and divide a significand by the base. Similarly, the
normalization threshold will require a more sophisticated algo-
rithm for detection, since the leading digits of the significand will
not be in integral form.

Figure 6 depicts a more detailed organization of a repre-
sentative floating point arithmetic unit, a simplified version of the
Analog Devices ADSP-3212. Adding the DFP operators de-
scribed above, it is proposed that a floating point ALU similar to
that depicted in Figure 6 be considered as a possible implementa-
tion of the DFP system. The design of each of the architectural
revisions is discussed separately below.

Data Path Translation

Packing and unpacking a DFP datum is straightforward
and can be accomplished by conventional encode/decode types of
circuitry as shown in Figures 5 and 7. An anomaly of the internal
format proposed is that it is possible for a significand stored in an
ALU register to have more precision than can be stored in
memory. There are two possible methods of rounding to the
allowed precision of external memory. In the architecture de-
picted in Figure 5, a floating point word with excess precision (i.e.
with more than p significant bits) is simply rounded as it leaves the
ALU. This will mean a possible trip through the normalization
logic to assure a properly encoded result, however, many ALU
designs assure that this is the case for any datum exported.
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Analternative method of rounding is to sacrifice any extra
precision after each arithmetic operation by selecting the round,
guard, and sticky bits (commonly required by rounding algo-
rithms) on the basis of the leading number of nonsignificant bits.
Since this sacrifices precision already available, the method
described above is preferred here. System designers will un-
doubtedly recognize that the preponderance of transfers between
the ALU and memory (or the CPU) will involve the simpler
unpack operation.

Decimal Base Scaling

Shifting a decimal significand, or any binary incommen-
surable significand, by the base is more difficult than in a compa-
rable binary oriented system in that simple physical displacement
of “digits” must be replaced by a combinatorial function on a
binary encoded word. This disadvantage is offset by the relatively
lower frequency with which such shift operations must be in-
voked [36] for higher radices, however, it is arguable that this
single limitation has prevented serious prior consideration of
non-binary floating point bases. Fortunately, several researchers
[1,12,18,29,34] have described techniques by which non-binary
scaling of an integer significand can be accomplished in substan-
tially less time and circuit complexity than had previously been
achieved. Raghuram [31] presents an excellent summary of these
methodologies.

Scaling a significand by base 10 effectively means an
integer multiplication or division of the significand by 10. Multi-
plication by 10 is straightforward and can be decomposed into
%10 = £*2 + f*8. Since a binary shift operation can be per-
formed in the data path, the multiplication of a significand by 10
can be accomplished in time and complexity equivalent to a con-
ventional binary addition. With appropriate lookahead logic,
such an addition can be implemented in O(logN) time.

Division by base 10 is a more interesting problem. One
cannot distribute the denominator as in multiplication, i.e. £/10#
£/8 + /2. However, the problem in this case can be broken down
into division of the form /10 = f/2 * {/5, demonstrating that the
difficulty inherent in decimal scaling is a division by five.

Petry et al [18], Petry [29], and Fenwick [12] have all
proposed methods of modified subtraction to perform quinary
division. The division of an arbitrary significand X by five can be

27 bit significand
2 bit 4bit | _b26
auxiliary sorityl 575 ]
exponent | Gncodei b2t
b23
S dbn  mEE o
- 4-1 — -
| multiplexor p— —
s23 §22 s21 l sO
significand sign 23 bit significand
6 bit biased exponent
_—>
?
32 bit DFP encoded datum

Figure 7. Decimal Floating Point Pack Operation
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broken down to the form
-X=4Q+Q+R, (28)

where R is the remainder and Q is the desired result. More
graphically, the majority of attempts at implementing specialized
division operators begin by decomposing the binary multiplica-
tion process that forms the dividend X,

. Q020000

- Q0,00
T T

XX XX X, 9)

Both the Petry [18] and the Schreiber [34] algorithms attempt to
extract the quotient from the dividend by noting that portions of
the of the quotient will be “exposed” at either end of the dividend
and the complete quotient may be obtained by unraveling the
addition of the partial products, from the left in Schreiber algo-
rithm, and from the right in the Petry algorithm. Fenwick [12]
proposes a similar technique consuming larger portions of the
dividend at each step. All of these techniques have generally
suffered from the bit serial nature of the algorithms, limiting them
to O(N) performance.

More recently, Petry and Raghuram [30] have shown
extensions to the Schreiber algorithm which decouple the devel-
opment of each of the quotient “digits” and allows conventional
look-ahead techniques to be employed. While the necessary
hardware will exceed that required to perform multiplication by
the base, it appears that some constant divisions (including
quinary) can be accomplished in O(logN) time.

Significand Threshold Detection

Detection of denormalized significandsis somewhat more
problematic for representations in which the significand digits are
not integrally encoded. This is obviously the case for the DFP
format. The smallest DFP significand that can be represented is
2¢/10 = 00011001100... It is recognized, therefore, that such
detection will require a subtraction of the minimum allowable
value that a normalized significand may assume. The construc-
tion of hardware to perform this task is, however, simpler than that
of a full subtraction since the subtrahend is a constant and the
borrow from the most significant bit is the only result of interest.
In effect, only the borrow lookahead logic is required. Figure 8
depicts a representative implementation where B is an ALU
internal format significand and K is the normalization threshold.

Carry or borrow lookahead is typically implemented by
assessing the likelihood that bit pairs (of the addend/augend and
minuend/subtrahend) of equal place value will generate or propa-
gate borrows (carries). In subtraction, bit pairs of the form 0-Oand
1-1 will obviously propagate borrows and a bit pair of the form
0-1 will generate a borrow. Discrete signals describing these
states are generally aggregated for groups of 4 to 8 bits to form
group propagate and generate functions. Similarly, these func-
tions can be collected to generate a word borrow function. The
necessary time to evaluate borrow generation is reduced, then,
from a linear time function to a log time function. Typically, the

b26 b25 b24 b23  b22 b0
‘k26 k25|k24lk23lk22 |k0
1 | | | | |
B - K Borrow Lookahead Logic l
K =227/10=000110011001100...

Most Significant Borrow

Figure 8. Normalization Threshold Detection



b3
5 b3b2_b 1b0. GG - Group Borrow Generate
"1100" | GP - Group Borrow Propagate
Lookahead

Figure 9. Threshold Detection Borrow Lookahead Term

bit, group, and word propagate and generate functions are used to
generate borrows for each bit subtraction stage. In this instance,
only the word generate function is of interest inasmuch as the
result of the subtraction is of little use. It is, therefore, only
necessary to implement the lookahead function.

The regular nature of the normalization threshold (viz.
...1100...) make it straightforward to create a logic element for
generating the borrow generate and propagate functions a nibble
atatime. Figure 9 depicts a sample of such a function. Thelogic
cell in Figure 9 can be implemented with the functions

GP b, ¥ b, * -b, * -b, (30)
GG b, +%, = G1)
Conventional borrow lookahead logic (i.e, the conjunction of

propagate terms and disjunction of generate terms) can be used to
collect the group generate and propagate functions.

Conclusions

The choice of floating point base is probably one of the
oldest and best researched areas in the study of practical compu-
tation. It has traditionally been concerned, more or less, with the
engineering of representations that can be implemented with
minimal cost and greatest accuracy. Cost, in this case, has been
associated with the size of stored data and the complexity of the
algorithms that manipulate them. Research in this area has
resulted in well understood methods of implementing floating
point data and algorithms that have endured very persistently for
the better part of twenty years. Little else in the evolution of
computer systems has remained nearly so constant.

The implementation of computer systems and the manner
in which they are employed, however, has obviously changed
significantly in the interval since the conception and initial study
of binary floating point representations. Contemporary comput-
ers are 1o longer designed solely on the basis of strict economy of
parts or with pure arithmetic bandwidth as the measure of their
utility. Inessence, we find that the criteria on which the advocacy
of binary floating point methods has been built are simply no
longer as substantial as they were twenty years ago. Do contem-
porary computer systems, in fact, have number representation
requirements that go beyond the scope of traditional binary
floating point representations? The persistence of decimal based
calculation in business applications and the growth of non-binary
representations in popular spreadsheet and database programs
generally offer to support the argument in favor of non-binary
floating point alternatives.

In this paper we have considered then a method of
encoding non-binary floating point radices that retains many of
the advantages of the simpler binary methods. In the case of
decimal representation, the proposed method produces a system
which requires no additional storage to encode a floating point
datum, achieves slightly better accuracy by most established
methods of static analysis, and suffers only a small reduction in
exponent range. Further, the method employed is easily exten-
sible to other potentially interesting radices and a straightforward
method for implementation has been outlined. We conclude,
therefore, that the format proposed represents a practical and
useful model on which future floating point implementations
might successfully be constructed.
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