Systolic Arrays for Integer Chinese Remaindering

Cetin K. Koc

Department of Electrical Engineering

University of Houston

Houston, TX 77204

Abstract

This paper presents several time-optimal, and spacetime-optimal
systolic arrays for computing a process dependence graph corre-
sponding to the mixed-radix conversion algorithm. The arrays
are particularly suitable for software implementations of algo-
rithms from the applications of residue number systems on a
programmable systolic/wavefront array. Examples of such appli-
cations are exact solution of linear systems and matrix problems
over integral domains. We also describe a decomposition strategy
to treat a mixed-radix conversion problem whose size exceeds the
arrays size.

1 Introduction

Residue Number Systems (RNS) provide an alternative to the
weighted number systems for doing arithmetic on large integers.
The advantages of residue representation are that addition, sub-
traction, and multiplication can be performed in a modular fash-
ion without carry propagation. The work on residue arithmetic is
mostly oriented towards hardware design since carry-free proper-
ties of RNS makes it attractive to implement digital signal pro-
cessing algorithms using table-lookup techniques [36,38]. Also
redundant moduli RNS provides fault tolerance in specialized
signal processing architectures due to its error detection and cor-
rection properties [24,3,12). RNS has applications in software
as well. For example, it can be used to find solutions of equa-
tions over integral domains [4,2,25,23]. This allows computation
of the exact solution of linear equations when the matrix of the
coefficients is ill-conditioned.

One of the drawbacks of the RNS is that a number repre-
sented in residue notation does not have magnitude informa-
tion. Thus it should be converted to a weighted number system
to extract this information. The methods for conversion of a
residue number to a weighted number system are based on two
different constructive proofs of the Chinese Remainder Theorem
(CRT). In the first case, the number is converted to a single-radiz
weighted number system, whereas in the second case it is con-
verted to a mized-radiz weighted number system. The similarity
between interpolation of polynomials and Chinese remaindering
of integers is well-known. Lipson’s paper provides an excellent
source on this subject [22]. As it is also noted by Bareiss (2], the
Lagrange polynomial interpolation formula is the analogue of the
single-radix conversion algorithm for integer Chinese remainder-
ing (see, page 270 in [19]). The mixed-radix conversion algorithm
given in the book by Szabo and Tanaka [36] is attributed to Gar-

*This work was supported in part by the Office of Naval Research under contracts
NO00014-84-K-0664 and N00014-85-K-0553.

216

Peter R. Cappello *
Department of Computer Science
University of California

Santa Barbara, CA 93106

ner [15] by Knuth [19] and Lipson [21]. The mixed-radix con-
version algorithm is in fact the analogue of the Aitken algorithm
for the Newton polynomial interpolation. Henceforth, we refer
to this algorithm as the Garner Algorithm.

Several hardware implementations of the Garner algorithm
are reported in the literature [37,17,9]. A parallel implementa-
tion of the single-radix conversion algorithms also is reported [39].
In this paper we present time-optimal, and spacetime-optimal
systolic arrays for computing a process dependence graph cor-
responding to the Garner algorithm. The arrays are especially
suitable for software implementations of algorithms for exact so-
lution of linear systems on a programmable systolic/wavefront
array.

This paper is organized as follows: in §2, we give the Garner
algorithm and point out its relationship to the Aitken algorithm.
We also present the process dependence graph of the Garner al-
gorithm in this section. In §3, 4, and 5, we embed the process
dependence graph of the Garner algorithm in spacetime, obtain-
ing several alternative systolic implementations of the Garner
algorithm, some of which are optimal. In §6, we present a novel
scheme, based on the mathematics of the problem, for decom-
posing a large mixed-radix conversion problem so that it can be
computed on smaller systolic arrays. Finally in §7, we summarize
the spacetime embeddings and the resulting systolic arrays, and
discuss possible implementations.

2 The Garner Algorithm

We are given:

e The moduli set {mo,my,my,...,m,} consisting of n + 1
pairwise relatively prime numbers, and

e The residues of a weighted number u with respect to each

modulus
u;=u (mod m;) for 0<i<n.

(1)

The number u then can be computed using the Garner algorithm
as follows:

Garner Algorithm
Step 1. Compute constants c;; for 0 <1 < 7 < n where

cijmi =1 (mod my) .
Step 2. Compute
vo = ug (mod mg) ,
vi = (up—vo)cor (mod m;) ,
v2 = ((u2—voleoz —vi)erz (mod my)
vn = (- ((un —v0)eon —v1)e1n — - —Un_1)en_1n (mod my) .

Thus, the residue representation {uo, t1,...,tn) Now can be
converted to mixed-radix representation (vo,v1,...,vs). This
representation of u has magnitude information since

@)
A mixed-radix representation can be converted to a single-radix
representation by applying Horner’s algorithm to formula (2).

The constants c;; are the inverses of m; modulo m; for all
0<i<j<n,ie,

u=vgt+vuvimg+uvamgmy +---+vymomy---Mmp_1 .

ciymi =1 (mod m;) , (3)
and can be computed using Euclid’s algorithm (see [19,21]).

It becomes evident that Garner’s algorithm is the integer ana-
logue of Aitken’s algorithm for Newton interpolation when we
arrange the above computations (Step 2) in a table (the multi-
plied difference table) similar to the divided difference table for
computing the coefficients of the Newton interpolating polyno-
mial (i.e., the divided differences). The entries of this table are
called the multiplied differences [22].

We now define V;; for 0 < ¢ < j < n such that v; = V;_; for
1<i<n,and vp = ug. The Vj; fori < j—1 are the temporary
values of v; resulting from the operations in Step 2. We build a
triangular table of values whose diagonal entries V;_;; = v;, for
1 < i < n. This table is similar to the Aitken table produced by
the Aitken algorithm. It is presented in Table 1, for n = 4.

The data dependences among the entries in the above ta-
ble lend themselves to systolic implementation. The first step
in achieving a systolic implementation is to form the process de-
pendence graph of the Garner algorithm. Coefficient ¢;; is in
column i and row j. The positions of the numerator terms (i.e.,
the V;;) are arranged as follows: First, a term of the form V;_,
is computed on the diagonal, then this term is used in every
operation along the ith column. Based on these observations,
Figure 1 presents the process dependence graph of the Garner
algorithm, for n = 4. The graph is drawn on the (1, 5) coordinate
system. The nodes of this directed acyclic graph (dag) represent
the operations, and the arcs correspond to dependences between
the variables used in the operations. The node at point (s,)
computes V;; by performing the operation

Cijy

— (mod m;) ,

(4
(5)

The above formulation of the processes at each node allows
preconditioned Chinese remaindering as well. In this case, the

Vi =

't
(Vie15 — Vic14)ei; (mod my) .

constants ¢;; are precomputed and saved at the nodes. The node
at point (i,7) now executes only (5).

In the following sections, we embed the process dependence
graph of the Garner algorithm, G, in spacetime to produce sys-
tolic arrays some of which are optimal (for spacetime embedding
techniques, see [28,29,8,27,13,31,32]).

4 -0
3
2 —
1
1 -
0 T t }

Figure 1: The process dependence dag for Garner’s algorithm (n=4).

3 A Time Optimal Systolic Array

In this section, we present a time-optimal array. We embed the
process dependence graph for the Garner algorithm, G, in space-
time. The abscissa is interpreted as time (t); the ordinate as
space (8). The linear embedding, Ei, is as follows:

]3] e e

The result, depicted in Figure 2 for n = 6, is a time-optimal
array. Data that flows south — north in Figure 1, flows in the

11

10 ©)

direction of time (perpendicular to space) in this design: It is in
the processors’ memory. Data that flows west — east in Figure 1,
flows up through the array. Data that flows south — east in
Figure 1, also flows up through the array, but at half the speed
of the west — east data.

Process (1,7) is executed at time i + j in processor j. By
inspection, we see that the array uses n processors, finishing the
computation in 2n — 1 steps. The number of vertices (processes)
in a longest directed path in any process dependence graph is a
lower bound on the number of steps of any schedule for computing
the processes. In our graph, the number of vertices in a longest
path is 2n — 1. This array thus uses a spacetime embedding that
is optimal with respect to the number of steps used. Such an
embedding is referred to as time-optimal.

Table 1: The multiplied difference table, for n = 4.

Voo = (ue —vo)cos (mod my) Vie= (Voo — Vor)era (mod my)
Vos = (ug —vo)coa (mod m3) Vis=(Vos — Vor)ers (mod ms)
Voz = (43 —vo)ecoz (mod m3) Via = (Voz — Vor)erz (mod mj)
Vo1 = (41 - vo)ecor (mod m,)

Va2 = (Vie - Viz)eas

Vag = (Vis - Via)eas

217

(mod my) Vae = (Vaq — Vaz)cse (mod my)

(mod m3)

e S i

Figure 2: A spacetime embedding (E;) of the process dependence dag for Garner’s algorithm (n = 6).
The resultant linear systolic array is time-optimal.

4 Space-Time Optimal Systolic Arrays

Definition 1 A graph’s embedding is spacetime-optimal when it
is space-minimal among those embeddings that are time-optimal.

We now make a slight modification to the above array, pro-
ducing a spacetime-optimal array. There is unused time on the
lower numbered processors. We reschedule the computation done
on the u;iper processors onto these lower processors. More for-
mally, we embed the process dependence graph as follows:

t 1 . .
[s] T,[;]forign—];
t { 0 . .
. N ¢ >n-3.

This embedding, Ej, is illustrated, for n = 6, in Figure 3.
This design has 2 phases of data movement. In the 1st phase,
data moves as in the embedding E). As the 1lst phase ends,
and the 2nd begins, there is a transition: When n is even (as
depicted in Figure 3), there are 2 time steps in which the south
— east data flows in the direction of time: It is in the uppermost
processor’s memory for these 2 steps. When n is odd, the south
— east data always moves through the array.

(7)

(8)

SPACE

In the 2nd phase, data moves as follows. Data that flows
south — north in Figure 1, flows down through the array. Data
that flows west — east in Figure 1, flows in the direction of time:
It is remembered in this phase. Data that flows south — east
in Figure 1, also flows down through this array, but at half the
speed of the south — north data.

Of those spacetime embeddings that are time-optimal, this
embedding also is space-minimal:

Theorem 1 Embedding E3 of G 18 spacetime-optimal.

Proof The embedding E; is identical to E; with respect to
time: it too is time-optimal. We now argue that the embedding
is space-minimal among time-optimal embeddings. Let us focus
on the time steps in which all 3 processors are used (which we
refer to as the processor-mazimal time steps). They are time step
6, 7, and 8. In order to reduce the number of processors, during
the processor-maximal time steps the nodes scheduled for some
processor must be rescheduled onto the other 2 processors. Two
processors suffice, for example, if the nodes named (1,5), (1,6),
and (2,6) can be rescheduled from processor 2 onto processors 0
and 1. These nodes are in a longest directed path in the process
dependence dag. This means that none can be rescheduled for
earlier completion without violating a dependence. Neither can
they be scheduled for later completion without either violating a

Figure 3: A spacetime embedding (E3) of the process dependence dag for Garner’s algorithm (n =6).
The resultant linear systolic array of [n/2] processors is spacetime-optimal.

218

Figure 4: A spacetime embedding (Es3) of the process dependence dag for Garner’s algorithm (n = 6).
The resultant ring systolic array of [n/2) processors is spacetime-o optimal.

dependence, or extending the overall completion time, violating
time-optimality.In fact, in this dag, every node is on some longest
directed path, and hence can be rescheduled onto neither an ear-
lier nor a later time step. In particular, the nodes scheduled for
the processor-maximal time steps cannot be rescheduled. The
number of processors therefore cannot be reduced: The design is
spacetime-optimal.

Any spacetime embedding of this process dependence graph
that completes in 2n — 1 cycles, must use at least [5] processors.
a

Moreover, the nonlinearity of our spacetime transformation is
necessary: There does not exist a linear embedding of the initial
indices that is spacetime-optimal.

We now present 2 other spacetime-optimal embeddings of the
process dependence graph of Figure 1. The first is another varia-
tion of the array resulted from embedding E;. We again resched-
ule the computation done on the upper processors onto the lower

processors. To do this, we connect the endpoints of the linear ar-
ray, making a ring of processors. More formally, we nonlinearly
embed the process dependence graph as follows:

i+7; (9)
j mod [%J . (10)

t =

s =

This embedding, Ej, is illustrated, for n = 6, in Figure 4.
Its data flow characteristics are identical to those of embedding

E;, except that the upper processor is attached to the lower
processor, and data movement wraps around.

SPACE

/ /
/
/ / /

]

\//

Since this embedding results in a computation of the process
dependence graph that uses 2n — 1 steps and [3] processors, it
too is spacetime-optimal.

Finally, we present a bilateral array in which the south —
north data of Figure 1 moves up through the array, while the
west — east data moves down through the array. Such a data
movement scheme may be useful, depending on the larger context
of which this computation is a part. The spacetime embedding,
E,, is presented in 2 steps:

1. First, we embed the process dependence graph, illustrated
in Figure 5, as follows:

t | 1 11
[s] ._Tz[j_l] , where Tg—[_l 1] .

(1)
In this spacetime embedding, when processors are used,
they are used every other time step.

2. We now compress the spatial extent of this embedding with
the following nonlinear transformation:

Ty:= |C| , where c:[é g] (12)
2

R TR

Processor efficiency (i.e., the percentage of time that a pro-
cessor is used) is doubled asymptotically by this nonlinear
transformation. Figure 6 illustrates the result.

A
P

N
e

he) o

/ N / N TME

0 1 2 3 4

—O—-—'—'O —O

6 7 8 9 10

Figure 5: A spacetime embedding of the process dependence dag for Garner’s algorithm (n = 6).
The resultant bidirectional linear systolic array has [n] processors.

SPACE

0 _.;(\ ‘‘‘‘‘ N

Figure 6: A spacetime embedding (E,) of the process dependence dag for Garner’s algorithm (n = 6).
The resultant bidirectional linear systolic array of [n/2] processors is spacetime-optimal.

This design has 2 phases of data movement which alternate
with each time step. Regardless of the phase, data flowing south
— east in Figure 1, flows in the direction of time: It is remem-
bered. In phase A, data flowing south — north in Figure 1, flows
up through the array; data flowing west — east in Figure 1, flows
in the direction of time. In phase B, data flowing south — north
in Figure 1, flows in the direction of time; data flowing west —
east in Figure 1, flows up through the array. Since this second
transformation results in an embedding that uses 2n — 1 steps
and [2] processors, it too is spacetime-optimal.

5 A Two-Dimensional Array

We now present a 2-d array for computing the process depen-
dence graph of Figure 1. This is done by embedding the process
dependence graph into a 8-d space. One way to do this is with
a linear embedding, Fj:

t 1 1] .
al =110 ['] (14)
82 01 |L7

t + + t t t +

1 2 3 4 5 6 7 TIME

Figure 7: A spacetime embedding (Eg) of the process dependence dag
for Garner’s algorithm (n = 4). The resultant triangular systolic array
of n(n + 1)/2 processors has a period of one time step.

Figure 7 illustrates the result. In this array, there is a proces-
sor for every process (in the process dependence graph). The flow
of data between processors corresponds to the arcs in the process
dependence graph. Every processor whose corresponding vertex
in Figure 1 has indices whose sum is k executes its process at
step k. Execution completes after 2n — 1 steps. This embedding
has the property that each processor is used exactly once per
execution of the process dependence graph. The array can start
executing a new process dependence graph every step. Figure 8
is intended to illustrate the pipeline quality of this array; it shows
2 process dependence graphs embedded in spacetime such that
execution of the 2nd starts 1 step after the 1st: Executing k such
process dependence graphs uses 2n + k — 2 steps.

1 2 3 4 5 6 7 8 TME
Figure 8: A spacetime embedding of two copies of the process depen-

dence dag for Garner’s algorithm (n = 4). There are two distinct pro-

cesses that appear as though they are embedded in the same point (C) of

spacetime. They, in fact, are embedded in distinct spatial coordinates.

The process from the first copy of the dag ezecutes on processor A while

the process from the second copy ezecutes on processor B.

6 A Decomposition Strategy

One of the well-known constraints in the VLSI implementation of
algorithms is what we call the eztent problem. Processor arrays
are of fixed extent, and we must use them effectively. The size
of the problem rarely is fixed beforehand. There are 3 cases
depending on whether the size of the problem is smaller than,
equal to, or larger than the array:

Equal to: In this case there should be no difficulty in using the
processor array effectively.

Smaller than: In this case, much depends on the structure of
the algorithm. In most cases this situation is handled easily,
by disabling some units (assuming this is possible). Hence,
a less efficient use of the array results. There are situations,
however, in which this is not possible. For example, when a
processor array recirculates data, or uses wrap-around con-
nections (e.g., Cannon’s array for matrix product [5,11]).
Again, the situation is handled by suitably increasing the
size of the problem with data elements that do not affect
the result (e.g., identity elements with respect to the size
of the problem). In any case, the array is used with less
than full efficiency.

Larger than: This is the most interesting situation. Heller’s
corollary [16] to Murphy’s law states:

e No matter what special-purpose device is available,
there is a problem too large for it.

e The problem will manifest itself only after the device
is acquired and can no longer be modified.

e The problem cannot be ignored.

We thus are advised to consider this case in some detail. The
difficulty of this case is directly proportional to the algorithm’s
degree of decomposability. At best, the algorithm can be decom-
posed into blocks whose size equals the extent of the processor
array. In this case, partial results can be composed using a pro-
cessor array of the same size (perhaps the same array). Work on
general methods for this problem has been reported by Moldovan
and Fortes [30]. Problem-specific methods also have been given
considerable attention (see, e.g., Schreiber and Kuekes [35] and
Schreiber [34]).

We now formulate the mixed-radix conversion problem as a
system of linear congruence equations. We then show that, in
this formulation, the problem can be decomposed into smaller
mixed-radix conversion problems, and small inner-products (of
vectors modulo a number from the moduli set).

Recall equation (2)

4 = vo+uvimg+vamomy+ -+ vymomy-c-Mp_1 .

The coefficients v;, for 0 <1 < n, can be obtained by solving

vo = up (mod mg)
v + vimp = u; (mod m,)
vo + vimo = uz (mod my)

v + vimg + + vamemy--ma_; = u, (mod my)

We represent the above linear system of equations in matrix
notation as

Yo uo mo
v uy my

M .= . | (mod D, (15)
Un Upn mp
where
1 0 0 0
1 mg O .. 0
M= . . .

1 mg momy momy - -+ Mp_1
(or more compactly, Mv =u (mod m)). This system is solved
by applying Garner’s algorithm to the integers ugp, uy,...,u, us-
ing the moduli set mg,my,...,m,. We denote this operation
with

Garner_Algorithm [u;,mj;0 < 7 < n] ,

producing the set of multiplied differences vo, vy, .., vn.

Assuming n+1 = (p+1)(g + 1), we partition matrix M into
(p+1) x (p+ 1) dimension matrices M;; for 0< j <1<y, and
vectors v, u, and m into (p + 1) dimension vectors v;,u;, m; for
0 < ¢ < gq, respectively. Thus,

Mo 0 O - O vo w mo
Mo My, 0 - 0 vi w m;
My M My - O V2 | = | U2 | (mod | M2
Mg Mg Mg - Mg Ve Uy m,
(16)

where matrices Mj; are lower-triangular and the zero matrices
are of the same dimension as the M;; matrices. System (16) can
be solved via forward substitution.

Procedure Partition_and_Solve
1: vo = Solve[Mgovo =ug (mod my) |
FOR i =1 TO ¢ DO

BEGIN
2: e =1
FOR;j=0TO+—-1DO
BEGIN
3: e; = e; — My;v; (mod xn.)
END FOR
4: vi; = Solve[M;;v; = e¢; (mod my) |
END FOR

END PROCEDURE

We consider the equation Moovo = ug (mod my), i.e.,

vo uo mo
v Uy my
M |=]| . |(md| . [)
Yp Up myp
where

1 0 0 0
1 mg 0 0
M=|1 mo 0 0

1 mg memy Moy -+~ Mp_1

A comparison of this system to (15) shows that the solution of
this system of equations is equivalent to application of Garner’s
algorithm to the set (u;,m;), for 0 < 7 < p. That is,

Solve|Moovo =ug (mod my)]
= Garner_Algorithm [u;, m;;0 < 5 < p|.

Now, we consider solving Muv; =¢; (mod m;) for1<i<g.

Observe that My; =

mMomy * - My(p41)—1 0
MMy« My(pt1)—1 MoMy - My(p41)

o

Momy ***My(p+1)—1 MoMy " My(p41) MMy « - My(p+1)+p—1

1] 0
L mipey) 0

=u| 1 My 0
1 mipey) Mi(p+1)Mi(p+1)+1 * ** Mi(p+1)+p—1

where y = momy - -- Mi(p+1)-1- So,s0lving M;v; = e; (mod my)
is equivalent to applying Garner’s algorithm to vectors (d;, m;)
where

-1
d; = (moml ... m;(pﬂ)_,) e; (mod my) ,

or more explicitly

di(p+1) Ci(p+1) Mi(p+1)
di(p+1)+1 -c Ci(p+1)+1 (mod Mi(p+1)+1)
dip+1)4p Ci(p+1)+p Mi(p+1)+p
where
C0,i(p+1)Ci(p+1) * ** Ci(p+1)-L,i(p+1)
Cc= €0i(p+1)+1CLi(p+1)+1 " ** Ci(p4+1)—1,4(p+1)+1

€0,i(p+1)+pCLi(p+1)+p * * * Ci(p+1)~1,i(p+1)+p

and where the c;; are the inverse terms defined by (3). Thus,
Solve[M;;v; = u; (mod m;)]

= Garner_Algorithm {d;, m;;i(p+ 1) < j <i(p+1) +p] .

The next step is the construction of the elements of matrices
M;; for 0< 5 < ¢ < g. Since M;; is a matrix with repeated row

Moy -+ My(pt1)—1 3 MOML " Myi(pi1) 5 +-+) MOML " My(ps1)4p-1 »

we can construct M;; by first computing the prefix product of
the terms

Milp+1)-1 5 Mhi(p+1) 5 Mi(p+1)+1 5 «+ » Mi(p+1)+p-1

using a linear array of size p + 1, and then multiplying every
element above by mgm; . .- M(i_1)(p+1)+p—1 Which is the element
in the last column of matrix M;_ ;.

In sum, our decomposition of the mixed-radix conversion
problem leads to the following computations:

Step 1 a mixed-radix problem of size p + 1;

Step 3.1 construction of matrices M;;, which can be computed
on a linear array of size (p + 1) when the entries of matrix
M;_1,; are used for the computation of the entries of M,;;

222

Step 3.2 matrix-vector product operation M;;v; which also can
be computed on a (p + 1) linear array (see, e.g., [20]);

Step 4.1 construction of the terms

C0i(p+1)+kCLilp+1)+k *** Ci(p+1)~14(p+1)+k for 0 < k < p,
which has a p 4+ 1 mesh as its process dependence graph
when the result from the (i-1)st step is used in the ith
step;

Step 4.2 a mixed-radix problem of size p + 1.

Our decomposition thus yields process dependence graphs
that can be embedded in spacetime, producing linear arrays of
size p+ 1.

7 Conclusions

We summarize the spacetime embeddings, and the resulting sys-
tolic arrays, in the following table:

Embedding | Space | Time | Optimality | Figure
E, n 2n—1 time 2

E; E3,E, [3]1 | 2n—1| spacetime | 3,4,6
E; 1("2—+H 2n—1 period 7

The systolic array resulting from the Ej embedding is optimal
with respect to period: it is completely pipelined.

Several implementations of the Garner algorithm are given in
the literature. These implementations are mostly hardware ori-
ented, using table lookup techniques. They thus put restrictions
on the size and cardinality of the moduli [37,17,9]. The systolic
arrays described in this paper have no such restrictions. Each
of the various design options have a place, indicating the poten-
tial usefulness of software implementations on a programmable
systolic/wavefront array. Examples of such software-oriented sys-
tolic computing systems include 1) an array of Transputers ! (18],
2) the Warp [1], and 3) the Matrix-1 [14].

An RNS simplifies large-number computations by resolving
a problem into a set of parallel, independent computations per-
formed in modularly formed channels. Consequently, combining
RNS with systolic arrays is particularly suitable for a VLSI im-
plementation. A fault-tolerant systolic array using redundant
residue system was reported in [10]. The systolic arrays in this
paper are also suitable for implementing fault-tolerant computing
systems employing residue arithmetic.

A systolic implementation of the Aitken algorithm for iter-
ated interpolation is reported by McKeown in [26]. McKeown’s
work is extended by Cappello, Gallopoulos, and Kog [6]. They
give systolic versions of Newton and Hermite polynomial inter-
polation using the algorithms of Aitken and Neville. A decompo-
sition strategy, similar to the one in §6, for solving large Newton
interpolation problems on smaller systolic arrays is reported by
the same authors [7].

! Transputer is a trademark of INMOS, Ltd.

References

1

2l

I3

(4

|5

6

|7

8

(9]

[10]

1]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

A. M. Annaratone, E. Arnould, T. Gross, H-T Kung, M. Lam,
O. Menzilcioglu, J. Webb, “The WARP Computer: Architecture,
Implementation, and Performance,® IEEE Trans. on Computers,
Vol. C-36, No. 12, pp. 1523-1538, December 1987.

E. H. Bareiss, “Computational Solutions of Matrix Problems Over
an Integral Domain,” J. Inst. Maths. Applics., No. 10, pp. 68-104,
1972.

F. Barsi and P. Maestrini, “Error Correcting Properties of Redun-
dant Residue Number Systems,” IEEE Transactions on Comput-
ers, Vol. C-22, No. 3, pp. 307-315, March 1973.

I. Borosh and A. S. Fraenkel, “Exact Solutions of Linear Equations
with Rational Coefficients by Congruence Techniques,” Mathemat-
ics of Computation, Vol. 20, No. 93, pp. 107-112, January 1966.

L. E. Cannon, A Cellular Computer to Implement the Kalman Fil-
tering Algorithm, Ph. D. Dissertation, Montana State University,
1969.

P. R. Cappello, E. Gallopoulos, and C. K. Kog, “Systolic Com-
putation of Interpolating Polynomials,” Technical Report No.
TRCS88-20, Department of Computer Science, University of Cal-
ifornia, Santa Barbara, August 1988.

C. K. Kog, P. R. Cappello, and E. Gallopoulos, “Decomposing
Polynomial Interpolation for Systolic Arrays,” Technical Report
No. TRCS89-1, Department of Computer Science, University of
California, Santa Barbara, January 1989.

P. R. Cappello and K. Steiglits, “Unifying VLSI Array Designs
with Linear Transformations of Space-Time,” in Advances sn Com-
puter Research, edited by F. P. Preparata, Vol. 2, pp. 23-65, JAI
Press, 1984.

N. B. Chakraborti, J. S. Soundararajan, and A. L. N. Reddy, “An
Implementation of Mixed-Radix Conversion for Residue Number
Applications,” IEEE Trans. on Computers, Vol. C-35, No. 8, pp.
762-764, Augusts 1986.

R. J. Cosentino, “Fault Tolerance in a Systolic Residue Arithmetic
Processor Array,” IEEE Trans. on Computers, Vol. 37, No. 7, pp.
886-890, July 1088.

E. Dekel, D. Nassimi, and S. Sahni, “Parallel Matrix and Graph
Algorithms,” SIAM Journal on Computing, Vol. 10, No. 4, pp.
657-675, November 1981.

M. H. Etzel and W. K. Jenkins, “Redundant Residue Number
Systems for Error Detection and Correction in Digital Filters,”
IEEE Transactions on Acoust., Speech, Signal Processing, Vol.
ASSP-28, No. 538-545, October 1980.

J. A. B. Fortes and D. I. Moldovan, “Parallelism Detection and Al-
gorithm Transformation Techniques useful for VLSI Architecture
Design”, J. Parallel Distrib. Comput., Vol. 2, pp. 277-301, August
1985.

D. E. Foulser and R. Schreiber, “The Saxpy Matrix-1: A General-
Purpose Systolic Computer,” IEEE Computer, Vol. 20, No. 7, pp.
35-43, July 1987.

H. L. Garner, “The Residue Number System,” IRE Trans. Elec-
tronic Computers, Vol. EL-8, No. 6, pp. 140-147, June 1959.

D. Heller, “Partitioning Big Matrices for Small Systolic Arrays,”
in VLSI and Modern Signal Processing, edited by S. Y. Kung, H.
J. Whitehouse and T. Kailath, pp. 185-199, Prentice-Hall, 1985.

C. H. Huang, “A Fully Parallel Mixed-Radix Conversion Algo-
rithm for Residue Number Applications,” IEEE Trans. on Com-
puters, Vol. C-32, No. 4, pp. 398-402, April 1983.

IMS T800 Transputer, Rpt. 72 TRN 117 01, INMOS Ltd., Al-
mondsbury, Bristol, UK, November 1988.

223

[19]

(20]

(21]

(22]

f23]
(24]

(25]

(26]

(27]

(28]

29]

(30]

[31]

(32]

{38]

(34

[38]

[36

37]

(38]

(39]

D. E. Knuth, The Art of Computer Programming, Volume 2,
Semsnumerical Algorithms, 2nd Edition, Addison-Wesley Publish-
ing Company, 1981.

H. T. Kung and C. E. Leiserson “Algorithms for VLSI Processor
Arrays,” in Introduction to VLSI Systems, by C. Mead and L.
Conway, pp. 271-292, Addison-Wesley, 1980

J. D. Lipson, Elements of Algebra and Algebrasc Computing,
Addison-Wesley Publishing Company, 1981.

J. D. Lipson, “Chinese Remainder and Interpolation Algorithms,”
Proc. 2nd Symp. Symbolic Algebraic Manspulation, pp. 372-391,
1971.

G. Mackiw, Applications of Abstract Algebra, John-Wiley & Sons,
Inc., 1985.

D. Mandelbaum, “Error Correction in Residue Arithmetic,” IEEE
Trans. on Computers, Vol. C-21, No. 6, pp. 538-545, June 1972.

M. T. McClellan, “The Exact Solution of Systems of Linear Equa-
tions with Polynomial Coefficients,” Journal of the ACM, Vol. 20,
No. 4, pp. 563-588, October 1973.

G. P. McKeown, “Iterated Interpolation using a Systolic Array,”
ACM Transactions on Mathematical Software, Vol. 12, No. 2, pp.
162-170, June 1986.

W. L. Miranker, and A. Winkler, “Spacetime Representations of
Computational Structures,” Computing, Vol. 32, pp. 93-114, 1984.

D. I. Moldovan, “On the Analysis and Synthesis of VLSI Algo-
rithms,” IEEE Transactions on Computers, Vol. C-31, pp. 1121-
1126, November 1982.

D. I. Moldovan, “On the Design of Algorithms for VLSI Systolic
Arrays,” Proc. IEEE , Vol. 71, No. 1, pp. 113-120, January 1983.

D. 1. Moldovan and J. A. B. Fortes, “Partitioning and Mapping
Algorithms into Fixed Size Systolic Arrays,” IEEE Transactions
on Computers, Vol. C-35, No. 1, pp. 1-12, January 1986.

P. Quinton, “Automatic Synthesis of Systolic Arrays from Uni-
form Recurrent Equations”, Proc. 11th Ann. Symp. on Computer
Archstecture, pp. 208-214, 1984.

S. K. Rao, Regular Iterative Algorsthms and Thesr Implementation
on Processor Arrays, Ph.D. Dissertation, Stanford University, Oc-
tober, 1985.

1. J. Schoenberg, “The Chinese Remainder Problem and Polyno-
mial Interpolation,” Tech. Rep. No. 2954, Mathematics Research
Center, University of Wisconsin-Madison, Auguts 1986.

R. Schreiber, “Solving Eigenvalue and Singular Value Problems
on an Undersized Systolic Array”, SIAM J. on Scientific and Sta-
tistical Computing, Vol. 7, No. 2, pp. 441-451, April 1986.

R. Schreiber and P. J. Kuekes, “Systolic Linear Algebra Machines
in Digital Signal Processing.” In VLSI & Modern Signal Process-
ing, edited by S-Y Kung, H. J. Whitehouse, and T. Kailath,
Prentice-Hall, Englewood Cliffs, NJ, 1985.

N. S. Szabo and R. I. Tanaka, Residue Arithmetic and sts Appli-
cations to Computer Technology, McGraw-Hill, 1967.

F. J. Taylor, “An Efficient Residue-To-Decimal Converter,” IEEE
Trans. on Circuits and Systems, Vol. CAS-28, No. 12, pp. 1164
1169, December 1981.

F. J. Taylor, “Residue Arithmetic: A Tutorial with Examples,”
IEEE Computer Mag., Vol. 17, pp. 50-62, May 1984.

C. N. Zhang, B. Shirazi, and D. Y. Y. Yun, “Parallel Designs for
Chinese Remainder Theorem,” Proc. of Intern. Conf. on Parallel
Processing, pp. 557559, 1987.

