Exploiting Redundancy in Bit-Pipelined Rational Arithmetic *

Peter Kornerup
Odense Universitet
DK 5230 Odense, Denmark

Abstract

We develop and analyse the use of a redundant con-
timued fraction representation of the rationals in the
implementation of an arithmetic unit for computing
the sum, difference, product, quotient and other use-
ful functions of two rational operands. Our repre-
sentation of operands and results allows the compu-
tations of the unit to be performed in a signed bit
serial, on-line fashion. Several such units can then be
interconnected for the computation of more compli-
cated expressions in a pipelined manner. Redundancy
is used towards the goal of achieving a small bounded
on-line delay and uniform throughput.

1 Introduction

This paper exploits the possibilities of using redun-
dancy in the representation of operands, to be used as
digit-serial input and produced as output of an on-line
arithmetic unit for rational arithmetic. In [7] and [8]
such an arithmetic unit was described, but based on
operands in non-redundant representations [11] and
[9). To reduce, and possibly bound the delay between
input and output of such a unit, it is essential to use
redundancy.

The novel features of these types of architectures is
that they operate on bit or digit stream representa-
tions of the rational numbers, which are derived from
the continued fraction expansions of the operand val-
ues. The basic idea was suggested in a 1972 memo
from MIT’s Al lab by Gosper {2], [5] p 360, [12] as
an algorithm operating on the partial quotients of a
continued fraction expansion.

The arithmetic unit supports the standard opera-
tions of addition, subtraction, multiplication, division

OThis work has been supported by the Danish Natural Sci-
ence Research Council, grant no.11-7319, and by a grant from
the APT Corporation, Dallas.

119

David W. Matula
Southern Methodist University
Dallas, TX 75275-0122

and many other usefull functions of two variables, ex-
pressed as

azy+bz+cy+d
exy+ fz+gy+h

z2(z,y) =

where a,b,c,d, e, f, g, h are arbitrary prespecified in-
tegers. The unit thus operates as a bit- or digit se-
rial, precision demand driven cell, several of which
can be interconnected to compute more complicated
arithmetic expressions, in general in a tree structured
pipeline computation.

A considerable literature exists on on-line arith-
metic (see e.g. [14], [1]) where operands are in redun-
dant radix representations, e.g. floating point where
the exponent is treated separately. Such arithmetic
units achieve constant input-output delay through re-
dundant representation of operands.

It is the purpose of this paper to introduce redun-
dancy in the representation of rationals discussed in
[11] and [9], and demonstrate that an architecture for
an arithmetic unit can be constructed. For this pur-
pose, in Section II we will describe the basic opera-
tion of the unit as operating on the continued fraction
expansions, but using signed partial quotients to in-
troduce redundancy at this level. Such redundancy is
needed (as in signed digit radix representations), to
allow the output of a partial quotient which can then
later effectively be corrected by plus or minus a unit.

Section III then carries redundancy into the rep-
resentation of the individual partial quotients, in
essence using a signed digit representation of these.
A binary level algorithm is presented for the imple-
mentation of the cell wanted.

Section IV concludes this paper with some consid-
erations concerning future work to be done.

2 Arithmetic on Redundant
Continued Fractions

As in [8] we will investigate the design of an algorithm
for evaluating the general expression

ary+br+cy+d

1
exy+ fr+gy+h ()

2(z,y) =
with integer coefficients a,b,¢,d, e, f,g,h, where the
variables z,y and the result z are to be represented
by the sequence of partial quotients of their continued

fraction expansions. Note that by appropriate choice
of coefficients in (1), the expression can be employed
to compute the standard arithmetic operations z +y,
z -y, x-y, z/y, as well as other expressions in z and

y

of a rational number z to be given by any sequence
of integer valued partial quotients ag,ay,...,a,,
denoted by x = [ag/a;/ ... /a,], for which z has the
value

2= ag+ .)
a; + 1
et
L

with |[a;/ais1/ - fan)| > 1 for i > 1.

The continued fraction expansions of z in (2) may
be variously referred to as signed quotient contin-
ued fractions to emphasize the fact the a; may be
negative as well as positive and/or redundant con-
tinued fractions to emphasize that the choice of g; is
not unique for non integral z.

The restriction |[a;/aiy1/.../as]] > 1 for
i > 1 in (2) allows that we may write z =
[a1/az/ ... /a;_2/(a;_y + f)] with the fractional part
Ifl < 1. This assures that any truncated value
' = [ayfaz/.../a;_1] is a good approximation to
z in the manner of rounding up or down in the last
place (as with a radix representation). It further fol-
lows from this restriction that

1. only @y may have the value zero,

2. |a;] = 1 implies a; and a;4; have the same
sign, and

3. there is only a finite number of such redun-
dant continued fraction representations for
any rational z.

The set of all continued fraction expansions of 14—1

120

Herein we allow a continued fraction expansion qc+€$——qa+b

d——»b b\—pb+\d

\h \f Input p f pf+h
from x

c a\ a\ pa+\c
\g e e pe+g
Input q Output r
from y for z

c a h f
N e ’ }.rh—t}-rf

g e
N\

qg+h— qe-+f C-rg—\a,-re

Figure 1: The coefficient cube and its transformations
by partial quotient input and output.

allowed by (2) is

(2/1/3]
) 2/2/1/2)
] 27272/
(3/4]

Note that the set of continued fraction expansions
available for z may be interpreted as the result of a
process allowing the choice of one of two successive
integers for the next partial quotient (given the pre-
vious quotients) except for the last partial quotient,
which is then unique and of magnitude > 2 for n > 1.

In [8] we described the partial quotient algorithm
of Gosper [2] by the apparatus of the transformations
on the coefficient cube illustrated in Figure 1. We
here simply note that the input transformations for
z and/or y employing signed partial quotients pro-
ceed identically to the description in [8]. Our need
here is to formulate a new selection criteria allowing
earlier determination of a partial quotient to output,
exploiting the flexibility of the redundant continued
fraction representation.

As we shall be describing a recursive process, in
the following x and y will be taken to denote the con-
tinued fractions given by the remaining tails of the
initial z and y, and z is the yet to be determined tail
of the original z having deleted the leading partial
quotients of z already extracted as output. Similarly,
a,b,¢,d,e, f,g, h will denote the coefficients of the up-
dated coefficient cube.

The new selection procedure we now describe will

determine a next partial quotient of z, again utilizing
only the updated coefficient cube 8-tuple of integer
constants as in [8]. Since the expansions of z and
y are assumed redundant, we assume that |z| > 1
and |y| > 1, except possibly initially (ag may take
any integer value, and is the only partial quotient
when z and/or y is integral). We avoid any initial-
ization problem by delaying any attempt to output
until the first nonzero partial quotient of each ar-
gument has been input or the argument has termi-
nated. Note that if the range of the function z(z,y)
is within the interval » — 1 < 2(z,y) < r + 1 over
the domain || > 1 and |y| > 1, then certainly the
next partial quotient (say ax) is r. After the out-
put transformation, the “tail” z/(z,y) then satisfies
|2'(z,y)] > 1 so we shall always obtain the neces-
sary condition of (2) on the yet to be determined tail
Z'(z,y) = [ar41/ar42/ .. [an].

Assume for the moment that 2(z, y) is well defined,
i.e. the denominator is nonzero. Then after having
input sufficiently many partial quotients of z and y,
2(z,y) will be a monotonic function of z and y over
the domain of the remaining tails of z and y. For
the selection of the next partial quotient r of z(z, y)
it is then sufficient to consider the extreme values of
z(z,y) at the four limits of z and y over their ranges:

z(-1,-1) = z2(1,-1) =
a—b—-—c+d —a+b—-c+d
e—f—g+h “e+f-g+h

z(-1,1) = z2(L, 1) =
—a—-b+c+d a+b+c+d
Te=F+eth cHTtoth

©)

If there exists an r such that
r—1<2z(1,1),2(1,-1), 2(-1,1),2(~1,~-1) < r + 1.

then r is the next partial quotient of z(z,y), and
the output transformation can be performed updat-
ing z(z,y) to z'(z,y), and updating the coefficient
8-tuple as indicated in Figure 1.

A number of comments are due here. We want to
determine the range of 2(x, y) over the domain |z| > 1
and Jy| > 1. These domains are both infinite, open
intervals, which have to be interpreted in the affine
sense, i.e. through infinity. The “value” infinity here
can be taken as a value that signals the termination
of the continued fraction, i.e. as an “end-marker” of
z or y (c.f. the definition of the value of a contin-
ued fraction). Since the intervals are open, to obtain
bounds on z(z,y) by evaluating the four values in

121

(3), we must assume that z(z,y) is well defined and
monotone on the closed intervals |z| > 1 and |y| > 1.

As numerators and denominators are treated sep-
arately, it is sufficient for these considerations if ei-
ther z(z,y) or 1/z(z,y) is well defined and mono-
tone. This is the case if either the numerator
azy+bz+cy+d or the denominator ezy+ fz+gy+h
is non-zero over the domain |z| > 1 and |y| > 1.
An analysis of the root curves of the numerator or
the denominator shows that it is possible to deter-
mine the well definedness of z(z,y) or 1/z(z,y) by
the signs of their denominators at the four points
(-1,-1),(1,1),(-1,1) and (1,—1). Since the values
at these points are needed anyway, it is possible to
construct a function Zrange(Q). Given as input the
8-tuple of integers of the coefficient cube Q, it will de-
termine the range of values of z(z, y) over the domain
|z| > 1 and |y] > 1. It will compute the values of the
numerator and denominator at the four points, and
if their signs indicate that z(z,y) or 1/2(z,y) is well
defined and hence monotone on |z| > 1 or |y| > 1, it
will return their minimum and maximum ratio as the
interval:

Zrange(Q) = {z(z,y) | |z > 1, [y > 1}

where the interval is given in the affine sense. The
value of Zrange(Q) will normally be an open interval,
however if z(z,y) is constant, the interval reduces to
a single point. If necessary the function will request
more input from z or y to assure the well definedness
of z(z,y), and perform the appropriate transforma-
tion on Q as a side effect.

If either z or y but not both become exhausted,
only two ratios determine the range of z(z,y). A ter-
minated continued fraction may just be considered
“stuck at infinity”, so if say z is terminated, the val-
ues of z(00,—1) and z(oco, 1) determines the range of
z(z,y). And if both z and y terminate, the range of
z(x, y) reduces to the value z(0o,00) = afe. In this
case Zrange(Q) reduces to the single point a/e.

We can now sketch the algorithm for computing
the value of

azy+ bz +cy+d
2(z,y) = — .

ezy+ fx +gy+h

where z and y are given as redundant continued frac-
tion expansions, and the resulting value z(z, y) is pro-
duced in the same representation. For this it is con-
venient to recall a matrix notation from [8].
Corresponding to the variable substitution z = p+
1/z' to be performed when a leading partial quotient
p from z is consumed, the input transformation for z

may be described as:

d b
h f 0 1] _
c a 1 pf ™
g e
b pb+d
[pf+h
a pa+c)
e pe+g

The transformation corresponding to the substitu-
tion y = ¢ + 1/y’ may similarly be expressed as a
multiplication by the matrix

01

1 q
on a properly transposed version of the coefficient
cube array (see Figure 1).

Whenever the quotient selection algorithm assures
that a leading partial quotient r of z(z,y) can be
determined, i.e. Zrange(Q) C (r — 1,7 + 1), then the
transformation can be effected by multiplication with

the matrix
0 1
1 —r |’

again on a suitably transposed version of the coeffi-
cient cube Q.

As in [8] it is possible to perform equivalent ma-
trix transformations on a 2 x 2 x 2 array, contain-
ing the numerators and denominators of the four val-
ues z(—1,~-1),2(-1,1), 2(1,-1) and z(1,1) (the de-
cision cube), so that these are directly and recur-
sively computed. We will however not pursue this
optimization here, referring to [8] for further details.

For a numeric example of the algorithm we refer the
reader to the example in Figure 2, where the compu-
tation of {2 + {3 with }8 =1[2/3/4] and 4 = [1/4/3]
is displayed in terms of cube transformations.

We may now conclude this section with the obser-
vation that it is possible to construct an algorithm,
which takes as input z and y, given as a redundant
continued fraction, and produce the value of the func-
tion z(z,y) in the same representation. The algo-
rithm is on-line at the partial quotient level, most
significant, partial quotient first. As the output of a
very large partial quotient may require an unbounded
number of (small) partial quotients to be input, we
must measure the granularity for on-line delay at a
level other than the number of partial quotients, so
we now develope a signed bit binary version of this
algorithm.

122

+ 2 3 4
0 1 2
AN N N
1 0 1
1 0 1 3
N N N N\
0 0 0 0
) 1 3 8
\0 \1 \~3 1
AN AN
0 1 4
13 -35
4
4 -12 44
N \1 \1 \5
3 AN AN
,1—~r~-11
s 33\ 121
-2— \.11
N1 \0
-11

Figure 2: The cube transformations for the compu-
tation 32 = 18 4 1 with 32 = (3,1]]

3 The Binary-Level Algorithm

To reduce the on-line delay, it is necessary to be
able to consume input and produce output in small
“bounded units”, e.g. to operate at a bit level. The
LCF representation of rationals [7], [9] provides such
a facility albeit by a non-redundant representation.
To allow the possibility of bounding the on-line delay
we now introduce a signed bit redundant represen-
tation of continued fractions modeled after the LCF
representation [8].
A signed bit representation

[P]z =bpbn_1...b1bo,

€ {1,0,1} is termed normalized whenever |b,| =
, b1 # —b,. Thus we obtain the range 2"~! 4
< p < 2™*! _ 1 for any normalized (n + 1)-signed
t representation. Extending to a 4-letter alphabet
u,1,0,1} we term the even length strings

R(p) = un—lbnbn_l ...blbo f07' n 2 1

admissible self delimiting signed bit representations
of value p, whenever b,b,_; ...b1by is a normalized
signed bit representation of p, for n > 2, whereas
for n = 1 the strings b,4¢ of length two need not be
normalized signed bit strings, affording R(0) = 00 as
a convenient device to represent the possible initial
zero of a continued fraction representation.

For the redundant continued fraction z =
[ao/a1/ ... /an] we then obtain by concatenation the
admissible string

R(z) = R(ag) o R(ay)o--- o R(an).

The representation R(p) = u"™ byb,_;...b1be
will allow us to perform all input transformations

0

1
itive “shift-and-add” transformations itemized in the
following tree classes: ‘

{1

1
2
Switch bit transforms:

{2) {20}

Trailing bit transforms:

in terms of just the following seven prim-

Unary transform:

| U]
DY -
—

b [ro) [3s
0 1 01 0 1

Observation 1: The matrix { (1) 11) } has the fol-

lowing factorization into the seven primitive trans-
formations of (5) in one-to-one correspondence
with the elements of the representation R(p) =
u"'lb,,b,,,l ... bibg

n—1
01 _ 10 0 1
1 p 0 2 2 2,
L bnos 1 b
x 2 2 2 (6)
0 1 0 1

The factorization (6) provides an algorithm for the
digitwise input of information from a partial quotient
of z or y. Each matrix of (6) corresponds to a variable
substitution, in general the substitution

z= v+ az’
T 6+ pa!

can be performed by multiplying the coefficient cube
Q in the z-direction by an appropriate matrix

' 6 B
Q—sz{7 a}-

123

The three types of matrices of (5) hence corre-
sponds to the following variable transformations.

10 , 1
~ 2 = -
0 2 2
0 1 , 1
~ — z
2 2 -0t
1 z
2 2 ’
~z =
0 1 2 —bzx

Similarly input from y may be performed digitwise,
by multiplication in the y-direction with similar ma-
trices, corresponding to a factorization of the matrix
representing the variable transformation y = ¢ + .

It is here essential to observe that the leading Jig-
its of £ and y may be read in any order, and the
corresponding matrix multiplications in the z- and
y-direction may be interleaved in any combination.
This is due to the fact that the variable transforma-
tions of z and y may be interleaved in any way.

It is also important to notice that each matrix mul-
tiplication is no more than some simple shift and
add/subtract operations, which even may be per-
formed in parallel on four register pairs. The matrices
Just represent a convenient notation for some simple
register level operations, which allows us to express
their individual and combined effect in a rigorous way.

The output of a partial quotient r of z(z,y) may
also be performed at the digit level, corresponding to
the multiplication in the z-direction by the appropri-
ate matrix, which can also be factored as:

n-1
0 1 10 0 1
1 —r 0 2 1 -b,
1 baoy 1 %
x 2 2 2 2 (7)
0 1 0 1

where R(r) = u®~1b,b,_; ...by. Notice that it is now
possible to emit leading digits of the R(-) representa-
tion of r, before r is completely determined. For each
digit emitted, the appropriate transformation on the
coefficient cube is performed, by multiplication with
the corresponding matrix in the z-direction. Then it
may be possible to determine another digit of r, and
the cycle is repeated. If it is not possible to determine
the next digit, more input from z or y will have to be
taken before another attempt to output is made.

A transformation by multiplication in the z2-

direction by a matrix corresponds to a

rewriting: —y + aZ(z,y)

§—B2'(z,y)

l.e., z(z,y) is substituted by z'(z,y). In particular we
have:

2(z,y) = (8)

1 , 1
~Z@y) = i)
0
0 1 , 1
~Yen) =
2 -2 dzu)
1 b
2 2 ' Z(:E,y)
~ 2'(z, = —_—
0 1 (=.9) 2 —bz(z,y)

Whereas the input transformations do not change
the value of z(z,y), output transformations do so.
But it may now also be seen that it is permissible to
interleave output transformations with input trans-
formations in any order, as assumed above.

We are now ready to formulate an algorithm which
will determine the digits of R(r), where r is the lead-
ing partial quotient of z(z,y). It will utilize the func-
tion Zrange(Q), which given the coeflicient cube Q
will return an interval such that z(z,y) C Zrange(Q)
for all permissible values of the tails of z and y. If
necessary, the function Zrange will as a side effect re-
quest more input from z and y, to assure that such
an interval can be returned. The algorithm will use
a loop-construct, where the guards will be tested in
the order listed. If true, the following statement will
be executed and the loop repeated, testing from the
top again.

Algorithm RPQ {determines 1(r) from cube Q }
n:=1;
loop

Zrange(Q) C (—2,2): {output b = 0;

perform transf.

[
S =
H/—/

exit loop };
Zrange(Q) C (—4,—1): {output T;

perform transf. { g

N —
——

exit loop};
Zrange(Q) C (1,4): {output 1;

0 1
perform transf. { 9 _9 }

exit loop};
Zrange(Q) C (3,-3): {output u; n:=n+1;
0

1
perform transf. { 0 2 IR

true : {take more input from x or y};

end loop;

Assert{Zrange(Q) C (1,-1) }
loop
n=0: {exit loop};
Zrange(Q) C (3,-3): {output 0; n:=n-1;

o

perform transf.

}};
}};
—1% }};

true : {take more input from x or y};

[==IN 0
—

Zrange(Q) C (—4,—1): {output 1; n:=n-1;
perform transf.

Zrange(Q) C (1,4): {output 1; n:=n-1;

O o=
b 0D

(=N

perform transf.

cend loop;
Assert{Zrange(Q) C (1,-1) }

Output of Algorithm RPQ is thus a string
u" 1b,b,_1...by which is the representation R(r) of
the next partial quotient r of 2(z,y), as described by
the initial coeflicient cube Q. After completion of the
algorithm, @ has been transformed into a new cube
Q' representing z'(z,y), where

2z, y) =r+ FrE—
in agreement with the factorization (7).

Note that if at least one u has been output in the
first loop, then b, # 0 and Zrange(Q) C (1,4) U
(—4,—1) holds before the second loop is entered.
Which subinterval depends on whether a 1 or 1 was
generated, and it then follows that the R(-) represen-
tation generated i1s admissible.

We will conclude this section with an example of a
pipelin;ag computation of the expression (%-{- %)(%——

-’2—3) = 3F2, as pictured in the tree below:

The redundant signed bit representations of the
operands are:

R(3) = 1010 R(E) = 1111
R(%) = 10011 R(12) = u11010

The computation in the cells performing addition
and subtraction may proceed in parallel, producing

the input operands for the cell doing the divide op-
eration. In each cell the eight registers of the coef-
ficient cube are initialized to realize the appropriate
operation for that cell. We will however not show the
actual operations performed on the coefficient cubes,
but illustrate the flow of information in and out of
the cells. From a simulation of the RPQ Algorithm
in the cells the following was obtained:

10 10 e
111 1 e
u 110

ul10011 e
tul11010 e
: m O umm 0 e

: uu mm 0 mi 1umOOmme
1234567890123456789012345678901234567890
0 1 2 3 4

ummno e

[T T I <P T o]

Each line here represent the flow along the arcs of
the computation tree above, where the horizontal po-
sition represents the time step at which the signed bit
is on the arc (i.e. consumed). E.g. at step 16 the first
bit of the result is produced, based of the availabil-
ity of the 0 bit produced by node f. The signed bits
arerepresented in the alphabet {u,0,1,m, e}, wherem
represents 1 and e represents termination. As may be
noticed, if both operands are available the individual
cells are servicing their arcs in a round-robin man-
ner, which is not the optimal strategy. These results
are based on a tool under development, the optimal
choice of input selection is still under investigation.

4 Conclusions

In the preceding sections it has been demonstrated
that it is possible to implement an arithmetic unit,
in the form of a cell which will take two operands
z,y signed bit serial, and produce the result z(z,y)
signed bit serial in an on-line fashion. The represen-
tation of operands and result is redundant over a four
letter alphabet, thus allowing a smooth flow of infor-
mation through the unit. Although we have not been
able here to demonstrate that there will be a constant
or bounded delay between input and output, this is
expected to be the case.

The RPQ Algorithm is fairly straightforward to im-
plement in hardware, utilizing parallel operations on
the appropriate four pairs of registers when perform-
ing the simple shift-and-add type operations. The
integer contents of each register can be kept in re-
dundant form allowing for true parallel addition (i.e.

125

no carry propagation) with resulting constant in-
put/output processing time. The problem areas lie
in the Zrange function, which require further devel-
opment.

An implementation of the Zrange function might
use a PLA look-up, based on leading bits of the con-
tents of the eight registers. However a straightfor-
ward look-up would require much too large a PLA,
so a “factoring” is necessary. One way of factoring
would be two parallel PLA’s dealing separately with
numerator and denominator followed by one deter-
mining the range. A number of other architectural
issues have been raised in [8] which also need further
investigation.

We have developed the Euclidean Quotion Bit En-
gine (EQUBE) simulation system [13] for the purpose
of experimenting with alternative decision rules for
input/output to our eight register coefficient cube.
The facility to deal with signed digits has been in-
corporated in EQUBE to provide an experimental
computing environment to complement the theoreti-
cal work on the foundations of arithmetic on redun-
dant continued fractions. A tool for the simulation
of interconnected cells is under development by Sgren
Johansen. This tool implements the RPQ Algorithm,
and is intended to be used for experimenting with
decision rules, and with composite computations, in-
cluding possible feed-back in computations.

In summary, our work so far has demonstrated
that redundant continued fraction representations
can be utilized for an on-line arithmetic over rational
operands, but the details require more investigation.

References

[1] M. D. Ercegovac, On-Line Arithmetic: An
Overview, SPIE Vol. 495, Real Time Signal
Processing VII, 1984, pp 86-93.

R. W. Gosper, Item 101 in Hakmem,
AIM239, MIT, Feb. 1972, pp 37-44.

C. H. Hardy and E. M. Wright, An Iniro-
duction lo the Theory of Numbers, 5th ed.,
Oxford University Press, London, 1979.

A. Y. Khinchin, Continued Fractions, 1935,
Translated from Russian by P. Wynn, P. No-
ordhoff Ltd., Grooningen, 1963.

(2
(3]

4

—

[5] D.E. Knuth, The Art of Computer Program-

ming, Vol 2, Seminumerical Algorithms,
2nd ed., Addison Wesley, 1981.

P. Kornerup and D. W. Matula, Finite Pre-
cision Rational Arithmetc: An Arithmetic

(6]

[7]

(10]

(11]

(12]

(13]

(14]

Unit, IEEE-TC, Vol. C-32, No. 4, April
1983, pp 378-387.

P. Kornerup and D. W. Matula, Finite
Precision Lericographic Continued Fraction
Number Systems, Proc. 7th IEEE Symp.
Comp. Arith., 1985, pp 207-214.

P. Kornerup and D. W. Matula, An On-
Line Arithmetic Unit for Bit-Pipelined Ra-
tional Arithmetic, Journal of Parallel and
Distributed Computing, 5, 1988, pp 310-330.

P. Kornerup and D. W. Matula, LCF: A
Lezicographic Binary Representalion of the
Rationals, submitted for publication.

D. W. Matula and P. Kornerup, Foundations
of Finite Precision Arithmetic, Computing,
Suppl. 2, 1980, pp 88-111.

D. W. Matula and P. Kornerup, An Or-
der Preserving Finite Binary Encoding of
the Rationals, Proc. 6th IEEE Symp. Comp.
Arith., 1983, pp 201-209.

R. B. Seidensticker, Continued Fraclions for
High-Speed and High-Accuracy Computer
Arithmetic, Proc. 6th IEEE Symp. Comp.
Arith., 1983.

K. L. Townsend, P. Bartholomew, M.M.
Tanik and D. W. Matula, EQUBE: Eu-
clidean Quotient Bit Engine Simulator,
Tech. Rep. 88-CSE-32 Southern Methodist
University, Dallas, TX 1988.

K. S. Trivedi and M. D. Ercegovac, On-line
Algorithms for Division and Multiplication,
IEEE-TC, Vol. C-26, No. 7, July 1977, pp
681-687.

126

