Algorithm Design for a 30 bit Integrated
Logarithmic Processor

David M. Lewis and Lawrence K. Yu

Department of Electrical Engineering, University of Toronto

Abstract

This paper describes the architecture of an integrated processor
that is capable of performing addition and subtraction of 30 bit
numbers with 20 fractional bits in the logarithmic number system.
Previous techniques would require 70Mb of ROM to implement this
processor, infeasible for a single chip implementation. The tech-
niques presented here use a factor of 275 less memory. The key to
this is the use of a linear approximation of the non-linear functions
stored in the lookup tables. The functions involved are highly non-
linear in some regions, so variable size regions are used for the
approximation.

The use of linear approximation alone would still require over
565Kb of ROM. Further compression is obtained by using linear
approximation with differential coding of each table. The compres-
sion is chosen to minimize ROM size, and obtains a further reduction
of 55%. A total of 260K bits of ROM are required to implement the
processor.

1. Introduction

This paper describes the algorithms used by an integrated 30 bit
logarithmic number system (LNS) processor. The logarithmic
number system (LNS) has been in use for several years [1]. Its
advantages include uniform error characteristics across the entire
range of values, and better accuracy than floating point representation
using the same number of bits, as well as high speed multiplication
and division.

The principal disadvantage of the LNS is the difficulty in per-
forming addition and subtraction. Addition and subtraction require
lookup tables with several times 2F words, for F bits of fractional pre-
cision [2]. For this reason, most published implementations have
been restricted to 8 to 12 bits of fractional precision [3,4]. To put the
difficulty of implementing high precision LNS processors using
recent architectures in perspective, the 30 bit design described here
would require about 70Mb of ROM to implement with the techniques
used by a previous implementation [4].

Linear approximation is a useful technique for reducing the size
of a lookup table. Linear approximation [5], quadratic approximation
[6], and linear approximation with a non-linear difference function in
a PLA [7] have been used to advantage in the approximation of some
functions, such as log(x). This is possible for log(x) because of its

192

smooth nature. The function required for subtraction in the LNS is
highly non-linear, so linear approximation has not been as successful
in this application. One attempt [8] has achieved better precision, by
using a modified linear approximation, but is limited to about 3.85
additional bits of precision. Furthermore, this method is only
described for addition. This paper concluded that linear approxima-
tion was impractical from the hardware standpoint for logarithmic
arithmetic.

Two problems were encountered in [8). The first was the need for
lookup tables with two inputs to perform the linear approximation.
This led to the modified linear approximation scheme, which cannot
achieve the full precision possible in the LNS. Secondly, although
not stated in [8), the subtraction function in LNS is highly non-linear,
and not easily adapted to a linear approximation. Thus, the most
recent previous implementations of LNS addition do not use linear
approximation.

This paper uses two techniques to greatly increase the precision
possible for a given amount of ROM. First, a new technique for
linear approximation is used to reduce the amount of table storage
required. The use of this technique alone achieves substantial reduc-
tions in table space, with a modest increase in other components.
Using linear approximation alone reduces the table space to 565K
bits, a factor of 127 reduction compared to [4].

This is still 100 large for integration onto a single chip using the
available technology. A second technique is therefore used to
compress each table. The functions in the tables are too non-linear to
allow linear approximation, so table compression based on linear
approximation with differential coding is used. Each table analyzed
in a manner that chooses the parameters for compression in a manner
that minimizes ROM space. There is a considerable advantage to
merging multiple tables into a single ROM, so slightly sub-optimal
tables are used to minimize total chip area. The total ROM required
after application of linear approximation plus differential coding is
260K bits, a factor of 275 reduction.

The paper is organized as follows. Section 2 introduces the LNS
representation and the algorithms used. The chip level design is
briefly described in section 3, followed by conclusions in section 4.

2. Algorithm Design

The logarithmic number system represents a number x by its sign
and logarithm in some base 4. Formally, the number x is represented
by the pair <s,,e,>, such that x =(~1)* x b*. In this paper we will
only consider b =2. e, is an N-bit fixed point number with / integer
bits and F fractional bits of precision, and N = F + 1. We also assume

an excess-n representation of e,, with n =2/ ~! — 1. If the bits of e,
are m;, i ==F, - - - ,I — 1, then the value of ¢, is

I-1 .
= ¥ mx2 -2

i=-F

@.1

The intended application of the LNS is as a replacement for float-
ing point, so it must be possible to represent zero. For simplicity, this
is done with a distinct bit, z,. The value represented is zero if z, is
one. A more economical representation would be to use a distinct
value of e, to represent zero, but we are interested in the least compli-
cated design.

The number x is thus represented by the triple <s,,z,,€,>, and has
the value

x=(1-2z)x (-1)" x 2% .2

The processor described in this paper uses a 30-bit LNS format,
with I = 8 and F = 20, and two extra bits for z, and s,. This format is
shown in Figure 1.

Sy 2y €x

PLILLR L b il

Figure 1. Operand Format

Multiplication and division in the LNS are trivial operations and
will not be described. Addition and subtraction are more compli-
cated, and are the focus of the processor described in this paper.

Letting a and b be two numbers represented in LNS format by
<2z4,55,€4> and <zp,5p,€,>, Witha 2 b , and b > 0, addition and sub-
traction can be implemented using the formulae presented below:

Addition; c=a+b
e. =€, + faley, —€,)
fa(r)=log(1+2")
Subtraction: c=a-b

€. =€ +f:v(eb - ea)
fs(r)=10g(1-2"

In this paper log(x) means the logarithm to base 2, In(x) means
the natural logarithm of x, and exp(x) means 2*.

The central difficulty in LNS arithmetic is the implementation of
the functions f,(r) and f;(r). The most recent implementation [4]
represents each of these functions by a set of ROMs, using some bits
of r as inputs to the ROM. The bits selected as inputs to the ROM
depend on the derivative of the function stored in the ROM. In
regions in which the derivative of the function is small, some of the
least significant bits of the function parameter will have an
insignificant effect (less than the accuracy requirement) on the func-
tion value. These bits do not need to be input to the ROM, reducing
the size of the table. In the strategy used by this implementation,
addition and subtraction each require F separate tables containing
from 1 to 2F words are required, containing a total of roughly 4 x 2F
words, each of F bits. Further optimization is used by [4] to reduce
the table size by another 20%.

The exponential dependence of ROM size on F forms the primary
limit in the precision attainable in the LNS. An implementation of

acceptable chip area in 3 micron CMOS technology is limited to
about 250K bits of ROM. With this limit, F cannot be made larger
than 12.

The processor described in this paper uses new techniques to
reduce the ROM requirements to an acceptable amount. The essential
result of the application of these techniques is to replace the 2F
dependence of ROM size by a larger linear factor, but a 2F? depen-
dence. This allows much more precision with a given amount of
ROM.

2.1 Linear Extrapolation

The first technique used in this processor is linear approximation
as a method of implementing f,(r) and f,(r). A linear approximation
of some function f(x) in the neighbourhood of x, is defined by (2.3).

df(x) % Ax

f G+ A0 =fa)+ LE 2.3)

df(X)

This formulation appears to require a separate ROM for

and a multiplication, which is potentially expensive. Funher con-
sideration of the functions involved will show that both of these can
be climinated.

First, the multiplication can be eliminated by using logarithmic
arithmetic, 50 (2.3) can be replaced by (24) if L5 > 0 and @2.5)if
) _,

dx

f (x+Ax) = f(x) + sgn(Ax) X exp{log(|Ax|) + log[df(x)ﬂ 24)

j:(x+Ax) = f(x) — sgn(Ax) x exp[log(lAx|)+ log[_‘gxa)ﬂ .5)

The function sgn(x) in (2.4) and (2.5) is the sign function.

The function f,(r) has a positive derivative, and is approximated
using (2.4), while f;(r) always has a negative derivative, and is
approximated using (2.5).

The advantage of (2.4) and (2.5) is not immediately clear. These
appear to be more complex to implement than (2.3), replacing a table

of g}r—) by a table of log % , and requiring additional logic to
r

perform logarithms and exponentials. In fact, due to the particular
functions under consideration, f,(r) and f;(r), (2.4) and (2.5) can be
used as the basis for further simplifications. Considering the formu-

Jac for log df;ﬁ”} K)} derived in (2.6) through (2.11),

and log

it can be seen that each of these is closely related to f,(r) and f;(r).
Thus, each of these can be ecasily calculated, eliminating the need for
lookup tables containing their values. Although additional ROMs are
required for log() and exp(), it will be seen that these are relatively
small.

o) _ 2 @26)
dr 1+2"
dfa(r) .
0g [T] =r—- log(]+2) 2.7

log[%g] =r—fur) (2.8)
“__z
log[— %] =r —log(1-2") (2.10)
l(;g[— df;ir)] =r—f(r) @.11)

The remaining problem is how to choose x and Ax as some func-
tion of r. A simple technique for choosing these is to partition the
binary representation of 7 into several parts, specifically r;, r, r;, and
re,such that r =r; +r, + r, +r,. Also define r, =r; +r;. The approx-
imation will be performed with x = r;, Ax =/, and r, will be ignored.
This leads to the approximation (2.12).

af(ry)
dr

J)=fry+nx (2.12)

The values of each of these quantities are described by two
integers p; and p,, p.<p; and p; <0, that partition the binary
representation of r. p; and p, are not constants, but are functions of »
(although not necessarily the same for both f,(r) and f;(r)). Given
some p; and p,, the corresponding values of r;, ry, r;, and r, are
defined by (2.13) through (2.16).

Te=Ip_1'""T_p (2.13)
r=ry ey =2 (2.14)
TR=T_y Ty + 27 (2.15)
Ti=r1 T (2.16)

The notation r, - - - r,, means the value of the binary representa-
tion of bits m through » inclusive of r.

The result is that 7, is a positive quantity, with 1 — p; bits being
dependent upon r, and r; is a signed quantity with p; — p, significant
bits, and }r;| <2”. The choice of 7, as a signed quantity rather than
an unsigned quantity eliminates one bit from r,, while maintaining
the same constraint on the absolute value of 7;. Finally, r, is positive
and r, < 2™, r; is the integer part of r, so r < ri+1.

Combining this partitioning of r with the values of the derivatives
in (2.8) and (2.11) and the approximations (2.4) and (2.5) leads to the
formulae (2.17) and (2.18) as approximations for f,(r) and f;(r).

Ja (=100 +sgap xexplogCI D) +ri = £ur0) @21)
J 0= £ -sgney xep[latin D +r 5] @18)

An overview of the architecture that implements addition and sub-
traction using linear approximation for f,(r) and fi(r) is shown in
Figure 2. This data path does not show the calculation of r, since it is
trivial. The box labeled split chooses p, and p;, while the partition
box splits up r into the components 7, and |r;|. The arithmetic per-
formed by the remainder of the data paths can be best described by
the algorithms shown in Figure 3.

Figure 2 does not show the precisions of the various data paths,

194

for simplicity. The output of the f;() and f;() ROMs is assumed to
have precision Fy, so data paths frt and fd have precision Fy. All
references to precision refer only to the number of fractional bits,
with the number of integer bits being determined by the range of
values that must be represented. The data paths are Irl, Icor, and cor
have precisions Fy,;, Fy,,, and F., respectively. Other data paths
have precision that is equal to the maximum precision data path that
is used to compute the value.

r
¥
split
De-Di L e
partition r
I — Vind
farfs log
ROM ROM
l Irl
a
b-a
“—
add
frt
l't\ Icor
2.X
ROM
l——J cor
€a add/sub
l ﬁ
add
€c

Figure 2. Data Path

The design problem for this level of the architecture is to deter-
mine the values of p; and p,, as well as the widths of all data paths.
The details of these choices are complex, are presented in another
paper [9], so only a brief overview will be given here.

The choice of p; and p, respectively determine the length of the
region that it is possible to linearly approximate over and that part of
r that may be ignored. Since Ax =r, and [r;] < 2”', linear approxi-
mation may be performed over a region up to 2” in length in each
direction (positive and negative). Also, r, is not used in the approxi-
mation, causing an amount of up to 2°* to be ignored. Each of these

contributes some error to the final result. The finite precision of each
word in the ROM and any rounding performed by the data paths also
contributes to the error of the final result. This error can be
mathematically expressed as a function of r, p;, and Pe, and the data
path widths Ff’ Fieors Feor» Fipi, say erro’(rvpbpevFﬁFlcar-FcanFlrl)'

The goal is design a processor that meets some accuracy criteria,
say half of a least significant bit, described by the equation
lermr(r,p,,p,.Ff,Fc,,,,F,w,,F,,,)| <27F1, By expressing this equa-
tion in terms of r, it is possible to obtain a relationship between the
data path widths and p; and p, as a function of r. Ideally, the system
could then be optimized to obtain the lowest cost implementation that
meets the constraint on all of these parameters.

The mathematics is essentially intractable, so certain
simplifications are used. The first replaces the error function by a
function which is simpler than the actual error function, as well as
being at least as large. If the new error function meets the accuracy

criteria, then the actual error function necessarily will meet the cri-
teria as well.

Addition:

e =eg + fo(ry) + sgn(ry) x expllog(|ry 1) + ry ~ f2(r))

frt =fa_tbl(ry)

Irl =log thl(|r;])
fd=r—frt

lcor =lrl + fd

cor = exp_tbl(lcor)

[=frt +cor ifr; 20
= frt —cor ifr; <0
e.=e;+ff

Subtraction:

ec =g + fi(r)) — sgn(r;) X expQog(lr;) + r = fo(r,))

frt =fs_thi(r,)

Irl = log_thl(r;)
fd=r—frt

lcor =1Irl + fd

cor = exp_tbi(lcor)

I =frt —cor ifr; 20
fF=frt +cor ifr; <0
ec=e+ff

Figure 3. Addition and Subtraction Algorithm

The second simplification is to treat each error source separately.
The error function can be viewed as the sum of the errors due to each
contribution. The error goal can be met by allocating each of these
separate error function some fraction of the total allowable error.
This is done in a manner that attempts to minimize total ROM size.
As a result, p; and p, and the data path widths are expressed as func-
tions of F and r.

The resulting values of all architectural parameters are shown in
Table 1. The values of p; and p, for addition are given in (2.19) and
(2.20), for subtraction with r<—1 in (2.21) and (2.22), and for subtrac-
tion with =27 < r <~277 =1 in (2.23) and (2.24). Note that these pre-
cisions refer only to the fractional bits of each data path. The number
of integer bits required depends upon the range of values that must be
represented. Details are described in another paper [9].

195

While the data path widths are chosen to meet the worst case con-
straints of both addition and subtraction, the values of p, and p,
chosen depending upon which operation is being performed. In gen-
eral, for more negative values of r, both f;(r) and f,(r) become flatter,
allowing the use of fewer bits of r as inputs to the lookup tables. For
fa(r), the values of p; and p, can be conveniently chosen using r;
alone, using the formulae (2.19) and (2.20). For f,(r) in the region
r<-1, this is also the case, using (2.21) and (2.22). The function
f5(r), as r approaches 0, becomes highly non-linear, requiring the use
of very small intervals for linear approximation. The domain of f,(r)
is therefore subdivided into intervals -2~ < r <—27*"!, which become
smaller as r approaches 0. For example, ! =4 corresponds to an r
with fractional bits of the form .11110r_gr_7 - - - . The value of / can
be produced using a priority encoder on the fractional bits of 7, since
it directly corresponds to the most significant zero in the fractional
bits of the binary representation of r.

As r approaches zero, the distance over which linear approxima-
tion is accurate become smaller, requiring tables with finer granular-
ity. Simultaneously, the size of each interval requiring a given granu-
larity becomes smaller. As a result, a fixed size of table is required
for each distinct value of /.

data path | precision
Fy F+7
Fiy F+7
Feor F+7
F
—|+2
Flicor 5 }

TABLE 1. Data Path Precisions

—F—r-1
= —r 2.19
P 2 | 2.19)
Pe=-F—r; =5 (2.20)
Y il @21
= '
pe=—F-r,—6 (2.22)
. —F—3—21J @23
2
pe=—F-5-1 (2.24)

The log and exp tables each use simple arithmetic identities to
reduce their size.

The log table uses the identity log(x) =log(x x 2") — n, choosing
n such that the input to the log table is in the range [1, 2). A priority
encoder determines the value of 1, and a shifter produces an input to
the logarithm ROM in the desired range. The value of —n is con-
catenated to the fraction output by the log table, which is in the range

[0, 1), producing the desired result. This halves the size of the loga-
rithm table.

Similarly, the exponential table uses the identity
exp(x) =exp(x —n) X exp(n). Only the fractional bits of Ilcor are
input to the exponential table, and a shifter on the output performs the
multiplication by exp(n).

The resulting tables required to implement the algorithm for vari-
ous values of r; are shown in Tables 2 and 3. Values of r; below cer-
tain thresholds are "essential zeroes" [4], for which f,(r) and f,(r) are
zero, and are handled with other logic. The values of r deemed to be
essential zeroes are smaller here than in [4] due to our use of conser-
vative mathematical error models.

According to Table 2, a total of 22K words of varying precisions
are required, with a total of 660,480 bits. This is a substantial amount
of memory, and further techniques are required to reduce it. First, it
is experimentally observed that it is possible to reduce Fy below the
value F +7. The proof of the value of Fy is conservative, and experi-
mentation reveals that F as small as F + 3 can be used without caus-
ing any errors across the entire domain of . All possible values of r
are tested to insure that there are no errors. This reduces the total
table size for f,(r) and f,(r) to 578,560 bits, still a considerable
number to integrate onto a single chip. Another technique is required
to reduce this into an acceptable quantity.

2.2 Non Linear Table Compression

A final technique is used to reduce the size of each of the function
tables. This is non-linear table compression. The preceding error
analysis has already made each of the non-linear functions stored in
ROM as loosely specified as possible without violating the accuracy
constraints, so each of these functions must be represented exactly in
order to guarantee the accuracy of the final result. This constraint
prevents any approximations being used to represent these functions.

The technique used to represent these functions is the combina-
tion of a linear approximation and differential code. That is, to
represent a function f(x) exactly, x is split into two parts x, and x,
according to (2.25), and the arithmetic identity expressed by (2.26)
and (2.27) is used.

X =xp+x, (2.25)
d
S =flxp) + fg”) X X, + fd(x) (2.26)
dj
400 = £ - fzpy + L8 s, @.27)

The essence of this technique is that a linear approximation of the
function is used. The linear approximation may not produce the exact
result, so a correction table fd(x) is used. This table stores the differ-
ence between the actual function value and the linearly approximated
value. Since the linear approximation is a good approximation over a

small interval, the values in fd(x) are small compared to f(x). It is
df(xp)

necessary to represent the value of f(x,) and for each possible

value of x,, and the value of fd(x) for each possible value of x.

The equations (2.26) and (2.27) correspond to the hardware
implementation shown in Figure 4. Given some f(x) with N, frac-
tional bits of precision in x, the non-linear table compression divides
x into two parts, x, containing the N, least significant bits of x, used
for linear approximation, and x, containing the N, most significant

196

bits, used to look up the function value and derivative, with
N,=N, + N,. The value of x, is used to address a ROM. Each word
daf(xy)

N,
contains the value of f(x;), the value of ,and 2™ - 1 correc-

tion words fd(x). A multiplexer using x, to select one of the inputs
produces the value of fd(x). A multiplier and adder together perform
the linear approximation. The correction word is then added in to
find the value of f(x).

ri fa tables fs tables

inputs size inputs size
-1 roy o r_g | 512 | seetable 2(b)
-2 r_y"°rog 512 rei'r-o 1024
-3 roycccr_g | 256 [roycccrog 512
-4 rycccr_g | 256 | rycccrog 512
-19 | rg 2 | rogro 4
20 | rg 2 | rogro 4
-21 | (none) 1 r 2
-22 | (none) 1| rg 2
-23 (none) 1
24 (none) 1

(a) Tables for f,(r) and f,(r)

li inputs size
0 | rop---ro | 1024
1 r3cccropn 1024
2 r_4 "'ros 1024
7 rg: -r_1g 1024
8 r_j0°"""r-19 1024
9 r-1y " ro 1024
10 | rgg rgo | 512
18 r_20 2

19 | (none) 1

20 | (none) 1

(b) Tables for f;(r),-1<r <0

table | size
log 2048
exp 4096
(c) Log and Exp Tables

TABLE 2. Table Sizes for Linear Extrapolation

Optimization of this design requires calculating the number of
bits of ROM. Let W, be the maximum number of bits required to
represent f(x,), W, be the maximum number of bits required to
df(xy)
dxy
the correction function fd(x). The total width of the ROM is W,
where W is given by (2.28).

W =W+ Wy H2 1) x W,

represent , and W, be the number of bits required to represent

(2.28)

The original uncompressed table requires 2 x W, bits, and the
compressed table requires 2™ x W bits.

Minimization of table size requires selecting a particular value of
N., which implies N. Ideally, for a given f(x), one could construct a
mathematical expression defining the total table size. This is imprac-
tical, since the function stored in the table is not an analytical func-
tion, but is an approximation of it after rounding to some precision.
This makes the mathematics involved difficult.

Since each of the tables is relatively small, the simplest technique
is to generate all of the tables for all values of N,. It is then possible
to select the table that contains the fewest bits.

An optimization program was written to find the optimal value of
W that minimized total table size. Each table is allowed to use a dif-
ferent value of N,, with the optimal values shown in Table 3.

A subtle point here is that the number of words in Table 3 is not
exactly the number of words given in Table 2 divided by 2. The
reason for this is some of the tables in Table 2 contain fewer than 2"
entries, and must be rounded up to a word in the compressed table.

Xp Xe

ROM

dfxp))
Xp J
fxp) l mpy | | mux |‘—
[]
fd(x)
add
fOx)

Figure 4. Non-Linear Function Compression

It is not possible to state in advance that the best implementation
in terms of chip area is obtained by implementing each table in a
unique ROM. In particular, the various f, and f; tables are candidates
for merging into a single ROM, since only one of the tables will be
accessed for each computation. It is therefore desirable to find other
values of N,, which, although sub-optimal, produce a word width that
is close enough to other tables’ word width that they can be imple-
mented in a single ROM without wasting excessive space. Reason-

197

able values for these tables are also shown in table 3.

Various combinations of merging tables into a single ROM are
possible. As an example, the optimal f, and f; tables total 184,144
bits, while merging total cost of merging all of the ROMs into a sin-
gle table with W=92 requires 201,388 bits, a 9.3% increase. This
9.3% increase must be compared to the overhead associated with
implementing each table in its own ROM.

optimal
Name | Function N, | Wp | Wa | W, w words
fa fa(r) 3 (23] 13 7 85 258
fsb £, r<-1 3 23|13 7 85 386
fssl i), -l<ri<10 | 4 [27 | 14 9 | 176 640
fss2 fi(r,-1<rg>10 | 3 | 28 | 22 | 11 | 127 132
log log(x) 4 23 12 5 1110 128
exp exp(x) 4 |24 113 7 | 142 256
(a) Optimal values of W
actual values of W
Name | Function N, | Wy | Wy | W, w words
fa fa(r) 312313 7 85 258
fsb fi(r),r <-1 312313 7 85 386
fssl £f:(n), -1 <r,i<10 3 127 | 14 7 90 | 1280
fss2 fir),-1<riz10 | 2 | 28 | 22 | 14 92 265
log log(x) 4 23 12 5 110 128
exp exp(x) 4 24 13 7 142 256

(b) Actual Values of W
TABLE 3. Compressed Table Sizes

In order to optimize chip area, an analytical expression for ROM
area can be constructed. Figure 5 shows a representation of a ROM
layout on an integrated circuit. Assume that a ROM contains a rec-
tangular array of bit cells of height b, and width b,,. If the ROM is
approximately square, with a border on the left side of width 4,, for
the wordline drivers, and a border of width d; on the bottom for sense
amplifiers, then the total ROM area of an n bit ROM is

Area(n) =n X by X b, + n X (b, x d,, + b, X ds) +d,, X d2.29)

Using this formula with parameters determined from actual circuit
design, the overhead associated with each ROM is so large that there
is a strong incentive to merge ROMs. In the final implementation, all
of the £, and f; tables were merged into a single ROM of 2189 words
by 90 bits. A small part of the fss2 table will not fit in this width, so a
separate 265 word by 2 bit ROM, called the excess ROM, is used to
store the extra information. This ROM is also altered slightly to sim-
plify the implementation, as will be described in the next section. A
summary of the architectural model of the ROMs is shown in Table 4.

3. Detailed Chip Design

A two chip design based upon the algorithms presented here is
under way. This design is still in progress, so the description of it in
this section is brief.

The chip is being designed in a conventional 2 level metal 3
micron P-well CMOS process. The design envisaged could be imple-
mented in a die 10mmx10mm. The multi-project chip fabrication
scrvice available to us has a fixed maximum die size of 8.2mm per

side, so our implementation is using two chips. One of the chips con-
tains the first several stages of logic and the log rom and F-rom, and
is very dense. The second chip contains the remaining roms and
stages, and occupies only a small fraction of the available area.

The total area of the processor is still well within the amount that
can be fabricated on a single chip with acceptable yield, so this deci-
sion is purely due to the constraints of the chip manufacturer.

The interface provided by the chip is a pipelined processor,
accepting two operands and producing one result per clock cycle.
The clock cycle is cofiservatively targeted at 150ns, and circuit simu-
lations to date suggest that this will be met. The only fundamental
constraint on cycle time in a pipelined implementation is ROM access
time, which is expected to be 100ns in 3 micron CMOS.

l d, l b, X1
Array byxNm
/ Sense Amps d,

word line drivers

Figure 5. ROM Area Model

ROM Words | Width | Total Bits
f 2189 90 197010
excess 265 2 530
log 128 110 14080
exp 256 142 36352
Total 247972

TABLE 4. ROM Sizes

The detailed logic design has been completed and simulated using
a logic simulator. The logic simulator is integrated into a software
driver that performs the arithmetic calculation and compares the
result of simulating the logic design to the comrect result. This
enables large numbers of test cases to be run with little effort. Logic
simulations of several thousand interesting cases have been per-
formed without any errors.

The optimal ROM sizes presented above require complicated
logic to map r into a ROM address. The complexity of the logic can
be reduced by placing each table at an address in the ROM that
simplifies the mapping function. This leaves "holes” in the address
space of the ROM, but no additional area is consumed, since the
corresponding words in the ROM are not implemented. This requires
a word line decoder that decodes only those addresses that are imple-
mented.

198

The ROMs also use a multi-level decoder tree that requires that
each contiguous set of addresses be a multiple of 8 words. This
slightly increases the size of the ROMs. Another factor that increases
the size of the ROMs is the desire to have an approximately square
circuit layout for large ROMs. This also requires rounding up the
number of words in each ROM to an integral power of two multiple
of some number that leads to a square layout. The resulting ROMSs,
as actually laid out, are described in Table 5. The excess ROM is so
small that a layout with a large aspect ratio is tolerable. A total of
260K bits of ROM are actually present in the chip. Almost all of the
fa and f; tables are grouped into a single ROM, called the f-ROM. A
small additional ROM is used to store some bits of fss2 that will not
fit in the f-ROM. Although the f-ROM is 90 bits wide, and the fss2
table only requires 92 bits, the excess ROM is organized as 265 words
by 9 bits. An access to fss2 therefore produces 99 bits, more than
apparently required. These extra bits are used because they reduce
the amount of data steering logic required for selecting different
widths of W, and W,. It is highly desirable to have each field for the
various tables located at the same position in the output word of the
ROM, a property that can only be achieved by using the larger excess
ROM. In our implementation, the f-ROM stores 27 bits of W;and 14
bits of W, for each word, together with a 49 bit field that is inter-
preted as multiple values of W;. This is not adequate for fss2, so one
bit from the excess ROM is used for the larger value of Wy of the fss2
table, and eight additional bits are used for the larger value of W,.
The only data steering logic required is used o interpret 49 bits in the
f-ROM cither as seven offsets of seven bits, for fa, fsb, and fss1, or as
three offsets of 14 bits for fss2. This leads to reduced implementation
complexity at the cost of a small number of extra bits of ROM.

An unfortunate side effect of the complicated algorithms used by
this processor is the large delay through the processor. A total of 10

pipeline stages are used in the present implementation. It is possible
that this could be reduced by more careful allocation of functionality
to each pipe stage. A faster implementation could also be achieved
by not using the non-linear compression, at the cost of larger ROMs.

ROM | Words | Width Bits

f 296 720 213120
excess 136 18 2448
log 64 284 14080
exp 128 220 36352
Total 266000

TABLE 5. ROM Implementations

4. Conclusions

This paper has described the algorithms used in an integrated pro-
cessor for 30 bit logarithmic arithmetic. Two techniques are used to
make this device possible. Linear approximation of the functions
required is shown to be simple due to the particular functions
involved. The linear approximation is performed using parameters
that are chosen to meet the desired accuracy. Subsequent non-linear
compression of each lookup table leads to a further reduction in table
size. The non-linear functions are compressed using linear approxi-
mation, plus a correction function that results in exact implementa-
tion of the desired function. The result is that a factor of 275 reduc-
tion in table size is achieved, compared to previous techniques. The
disadvantage of the techniques presented here is that they increase the

delay of the processor considerably, although the possibility improv-
ing the speed of the implementation by better pipeline partitioning
has yet to be explored.

5. References

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

(9]

J. N. Mitchell Jr, "Computer Multiplication and Division
Using Binary Logarithms", in IRE Trans. Electron. Comput.
Aug. 1962, pp 512-517

E.E. Swartzlander and A. G. Alexopolous, "The Signed Loga-
rithm Number System", in JEEE Trans. Comput., Dec. 1975,
pp 1238-1242

J. H. Lang , C. A. Zukowski, R. O. LaMaire, and C. H. An,
“Integrated-circuit Logarithmic Units", in JEEE Trans. Com-
put., May, 1985, pp 475-483

F. J. Taylor, R. Gill, J. Joesph, and J. Radke, "A 20 bit Loga-
rithmic Number System Processor” in [EEE Trans. Comput.,
Feb. 1988, pp 190-200

M. Combet, H. Van Zonneveld, and L. Verbeek, "Computa-
tion of the Base Two Logarithm of Binary Numbers", in /EEE

Trans. Electron. Comp., Dec 1965, pp 863-867

D. Marino, "New Algorithm for the Approximate Evaluation
in Hardware of Binary Logarithms and Elementary Func-
tions", in JEEE Trans. Comp., Dec 1972, pp 1416-1421

H-Y Lo and Y. Aoki, "Generation of a Precise Binary Loga-
rithm with Difference Grouping Programmable Logic Array",
in IEEE Trans. Comput., Aug. 1985, pp 681-691

F. J. Taylor, "An Extended Precision Logarithmic Number
System", in IEEE Trans. Acoust., Speech, Signal Processing,
Jan. 1983, pp 232-234

D. M. Lewis, "An Architecture for Addition and Subtraction
of Long Word Length Numbers in the Logarithmic Number
System", to appear in I[EEE Trans. on Comput.

199

