On-line CORDIC algorithms

Haixiang Lin

IBBC-TNO Organization for Applied
Scientific Research
Rijswijk, The Netherlands

abstract

The CORDIC algorithms provide in a fast way the calcula-
tions of a number of arithmetic basic functions. A CORDIC cal-
culation takes O(n) steps for a function, where n is the word
length of the operands. The speed is limited by the carry propa-
gation in the adders and the I/O throughput. Speed can be im-
proved by introducing redundancy in the calculation circuitry
and I/O throughput by doing 1/O transfers while calculating. The
latter is characteristic for the class of so called on-line arithmetic.
At the same time the pin requirements are limited to a single digit
per operand. This paper introduces a number of new algorithms
to make an on-line CORDIC implementation.

1. Introduction

In on-line computations, the input operands and results flow
through arithmetic units in a digit by digit manner, starting with
the most significant digit. An on-line algorithm is said to have an
on-line delay of 6, if for the generation of the j-th digit of the re-
sult, (j+8) digits of the input operands are required [1]. Fig.1
shows the principle of on-line computation and illustrates that
digit on-line arithmetic units can be chained to obtain a fast
throughput of digit-serial operands. In recent years many algo-
rithms for the on-line generation of the basic arithmetic func-
tions: addition, multiplication, division, and square root have
been considered [2-8). In essence, two algorithmic models have
been used to find suitable algorithms for the on-line calculation
of an arithmetic function. The first model is based on the use of
recurrence equations. In this model a partial result (or an equiv-
alent function) is calculated each iteration step by using the par-
tial result from the previous cycle [2,3,4,5]. The second model
is based on function minimization. The function to be calculated
is transformed to an equivalent function which has to be mini-
mized each iteration step. Most of the algorithms in this model
are based on the use of continued sum/product (CSP) algorithms
[9]. Examples can be found in [6,7,8).

The on-line generation of transcedental functions turns out to
be more difficult. A traditional known fast method for calculat-
ing these functions is the CORDIC method [11,12]. The
CORDIC algorithms are of the CSP-type and have O(n) timing
characteristics, where n is the word length of the operands. In
this paper it is shown that the CORDIC algorithms can be modi-
fied such, that the operations are on-line with respect to input-
and output operands.

2. The CORDIC equations.

The CORDIC method is based on vector rotations [11,12],
where a new vector P;, ;=(Xj+],Yi+1) is obtained from
P;=(X;Y;) according to

Henk J. Sips

Delft University of Technology
Delft, The Netherlands

Xiy1 = Xi + mpY 2+ (1a)
Yis; = Yi- piXi2+t (1b)
Ziv1 = Z; - pi6; (Ic)

where m e {—1,0,1} is the parameter for the coordinate system,
and p; € (-1, 1}. Although the equations can be formulated for
a general radix, we will restrict the discussion to r=2, for rea-
sons of convenience. Various arithmetic functions can be calcu-
lated by forcing Z or Y to zero, by chosing the appropriate val-
ues of p; in each iteration cycle. The values of g; are found by
6;i=m-12tan-I[m!/2.2-1]. The results calculated in Eq.(1a,1b)
have to be corrected through multiplication by the following
scaling factor

n-1
k! =I I(1+m¢f)'”2 with ¢=p2" (2)
=0

For the traditional CORDIC algorithms this scaling factor is
constant and can be calculated in advance. Some other schemes
use a slight modification of the iteration scheme in order to sim-
plify the factor (e.g., to force the factor to be a power of 2),
such that a multiplication is not necessary and the corrections can
be done by simple additions in each iteration [13, 14].

X1s648, Visbus,

v v

on-line
arithmetic | §)
unit 1 time diagram
-+
: ; X,y
¢ e
I o o o o o o o o o o e |
i \ w
on-line §5I i
arithmetic | « Vo
unit 2 167}
l z ; denotes the-th on-line digit of z
z
1

Fig.l1 Chained on-line computation

A number of authors have published on-line versions of
some of the CORDIC algorithms. Owens [8] uses a simplified
CORDIC scheme to calculate sin(x) with an on-line delay of 6=3
for r=8 . However, the result is unscaled (Eq.(2)), so it cannot
be used directly for further calculations. Ercegovac and Lang
[15] describe two chained CORDIC schemes to calculate rotation
factors, e.g sin(6), cos(8), with @=tan-I(x/y). The first CORDIC
scheme computes the angle which is transmitted in decomposed
form, i.e. a sequence of p; values, to the CORDIC module
which computes the rotation. The total latency time of their im-
plementation is 3n+3 clock cycles.

3. The On-line CORDIC equations

For on-line processing, the operands are to be represented by
a radix-r redundant digit set (-9,..,-1,0,1,..,n) where nis the
redundancy factor (r/2<n<r-1). An operand X is recursively
defined as

Xi=Xip + x457001 3)
and
8-1 J
— J
X,= xpr
J=0

where & denotes the on-line delay. Since we restrict ourselves in
this paper to r=2, the fully redundant digit set {-1,0,1} is the
obvious result to work with.

In the on-line case the CORDIC equations of (1) are trans-
formed to the following set of equations

X'iv1 = X'+ mpiY'i274 AXy 1(Xis 5, Yivo) (4a)
Yis1 = Y- piX'i27+ AY i1 1 (X146, Yivs) (4b)
Ziv1 = 2%~ pibi+ zis52°(+9) (4c)

where xi.s yirs, and zi, s are the new input digits of X, Y, and
Z, respectively, at the i-th iteration. X'p, Y’p, and Z’p are set
to Xp, Yo, and Zp, respectively, according to Eq.(3). The terms
AX;] and AY;4] are the correction terms to correct the error
due to the absence of x;.s, ¥i+s, and z;,¢ in the iterations
0,1,..,i-1. The calculation of AX;+; and AY;+; is considered in
Appendix A.

4. On-line characteristics for Z—0

To compute the arithmetic functions like x-cos(z)-y-sin(z)
(m=1), or x-cosh(z)+y-sinh(z) (m=-1), Z'; is forced to zero.

If we define W;=2%Z";, Eq.(4c) can be rewritten as

Wivs = 2(W; + zi452°% ppoy) o)
where ¢; =21.4; can be directly read from the constant angles
table. The value of p; is determined by W; + z;,52-%. Since full
carry propagation in an addition will be avoided, only the most
significant L digits of W; + z;,52-%, denoted as W*; , are
inspected. It holds that

IW; + zip52°0-W*;| < 2-(L-9-1) (6)

where ¢ is the position of the most significant digit of W; .
Combining Egs. (5) and (6) it follows that

27

Wier| < 2:\W*; - p;-a; |+ 2-(L-9-2) (7)

‘We must find an appropriate selection of p; such that Z';4 7
converges. A selection function of the form

1 ifWi2b
p=10 if Wi<b
-1 ifWi<-b)

where b is a positive constant (0<b<1). For the value of b a
simple value, like some power of two, is to be preferred to sim-
plify the selection process. The choice of & must be such that
Z'i+] converges to zero, i.e. Wj,; is bounded by a fixed posi-
tive constant.

First, we consider the case of circular rotation, i.e. m=1. It
can be shown that to ensure the convergence of Z';4; it requires
&=2. Furthermore, with 6=2, b=1/2 and L=5 (¢=0), it holds
IW;! <2 for all i. The proof of this is lengthy, but
straightforward, so it suffices to give the procedure. Wy consists
of the first two digits of the input Z, therefore it holds IWyl<1.5.
By considering all possible combinations of the first four most
significant input digits, it follows that [W;[<1.93 an IW, <] .51.
Now @;=tan"/[2], so by using a Taylor series-expansion
which is truncated and rounded up- and downwardly, it holds
that

2-i-(1/3)2-3i4(1/35)2-5i< §; <2-i-(1/3)2-3i+(1/5)2~5%
or

1-(1/3)2-2i4(1/35)2-4< oy <I-(1/3)2-2i4+(1/5)24%

By using this, it can be shown by induction that
2-\W*;- pjroy |1+ 2-2)<1.51, if IW;1 <1.51 for i>2.

From the definition W;=2:Z"; and IW;| <2, it follows that
Z'n4+1<2-(n-1)_ Thus, the convergence of the angle rotation of
Eq.(4c) is guaranteed for m=1.

For m=-1 (hyperbolic rotation), a similar analysis as for m=1
can be made. It can be shown that using the same selection
function (Eq.(8)) it holds IW;l <1.5 (\Wyl<1.0), for 6=2 and
L=4.

5. On-line characteristics for Y —0

To compute the functions z+tan-I(y/x) and (x2+y2)1/2 (when
m=1), or z+tanh!(y/x) and (x2-y2)!/2 (when m=-1), Y has to
be forced to zero. For the Eq.(4b), it holds that the convergence
is guaranteed if 1Y, 4 I<IX;1-2- (X; is bounded, see {12]). The
equation to be forced to zero is Eq.(4b), i.e.

YViel = Y- piX'i27 4 AYin 1(Xivs, Yies) 9)

The choice of p; is determined by the value of Y;. Let

V;=2"Y";, and assume again that only the L most significant
digits of V; are used for the selection and denote them as V*;.
Then it holds that V; = V*;+ V), with ¢V)being the truncation
error and lg(V)l<2-(L-1),

The selection function for p; is defined as

1 ifVi2b
p=40 i |v;|<b
-1 iV s-b

(10)

where b is a positive constant (0<b<1). The selection of can
simply be done by comparing the L most significant digits of
V*; with b. The value of b must be chosen such that the conver-
gence criterion, Y47 IIX;l-2-, is satisfied. For the circular
CORDIG, i.e. m=1, two cases can be considered:

A pi=0

This implies that [V*j<b or 1Y’j<b-2-i+2-(i+L-1)_Since (see
Appendix B) it holds

LZA Yii(xe¥y)

i+ 6+
< 2652770

=i+6 (11)
therefore,
n G (i+L-1 “(i+8+1
Y, =17+ 3 A, (xyp 1 sb27+ 200 265205
k=i+8
(12)
Since X;21/2 [15] for i21, from Eq.(12), the condition
1Y;4+71<X;-2- is satisfied if
b-2-i42-(+L-1)3.2 65.2-(i+8+1) g 1/2)-2-i
Therefore, the values of the parameters b, 8, and L must be
chosen to satisfy the following inequality
b<1/2-2-L1) . 2652-(5+1) (13)

B, pi=+1

Assume that p;=+1, i.e., V*>b (the same result follows for
V*<-b). With the substitution of

X=X, AX(x,y,)
k=i+6

into Eq.(4b), it follows

o r
Y=Y -X2" Z'S[Axi(xk’yk)'z I+AYi+1(xk’yk)] (14)
k=i+

It can been shown that

n

-i -
ZEAXi(xk,yk)-Z + AY, (x,y,)] 53-2'(”6) for i>0
=i+

(see Appendix B). Thus, from Eq.(14) it holds

Yise1 2 b2-0 - 2-(i+L-1) . X;-2+i - 3.2-(i+6)

28

and

Yipp Sb-2-1 4 2-(i+L-1) _ X;.2-i 4 3.2-(i+9)

Therefore, it holds 1Y;, 1<X;-2-, if

b22-L-1) 4 32-8 (15)
and
b<1-24L-1).32-8 (16)

From the analysis in A and B, it can be concluded that the choice
of b=1/4, 6=4, and L=5 satisfies the convergence criterion.

For m=-1, a similar analysis can be made. For arbitrary values
of the inputs no fixed on-line delay can be derived, due to the
characteristics of the resulting arithmetic function. However for
special cases a better result can be given. As an example, for the
function In(w), it holds In(w)=2 tanh(Y/X) with X=w+1 and
Y=w-1, restricting the ranges of the operands to /. 5<X<2.0 and
-0.5<Y<0.0 for 0.5sw<1.0. It can be shown that with b=3/4,
=3, and L=35 the convergence criterion is satisfied.

6. Digitizing the iteration results X';, Y'j, and Z';

The values of X';, Y’;jand Z’; are the results of the
CORDIC calculation. These values are stored in redundant form
and are driven to their final value in an iterative way and do not
directly give the (i-8)-th digit at the i-th iteration. In order to pro-
duce an on-line result, these values must be transformed into an
incremental representation where each iteration a new digit of the
result is produced. This procedure is called digitization (e.g. see
[7D.

A, The digitization of X'; and Y';

Let Y, i-d (the same consideration holds for X,-.d) be the on-line
digitized result of Y';4+7 and R;, ;= 2¢(Y';+] -Y;.q) be the
(scaled) residue (d is the on-line delay for digitization). Suppose
Yo has a positional weight of 2¢+4 after d initial shifts (not to be

confused with the real weight 29), then by using a symmetrical
rounding function up to the (¢+d)-th digit we obtain

i>d,
0<i<d

Yi-a = Roundg.a(R;)
Yi-d=0
Rip1 =2-Ri+ D(Y';) - 20+d-y; 4 (17)

where

D(Y';) = 20(Y i1 - Y7) = - pi-X'i+ 2LAY 14 1(Xiks, Yivs)-
It can be ensured that

12R; - 20+dy; q1<(1/2)24+9+ 24+e-L+1 | (L22) (18)

‘What remains is that the digitizer delay d and the truncation
length L must be chosen such that y; g is a single digit.

For m=1, it holds that IX'}|<sqr#(2)-K< 2.34, for X< and
1Y1<1, and 1AY; ¢ 1(Xi+ Yis §)\< 2.65-2-(i+6+1) (see Appendix
B). With 8=2, it follows ID(Y’;) $2.34 + 2.65-2-3 <2.67.

Therefore, it holds with g=1 (remember that ¢ denotes the
position of the most significant digit) that

12R;+D(Y';)- 29+d.y; 4 <(1/2)-24+14 24-L+24 2 67 (19)
¥i+1-dis a single digit, if it holds that
IR;,=12R; + D(Y';) - 29+d.y; f <1.5-2d - 2d-L+1
Therefore, the on-line condition becomes
(2.67-2-4+3-2-L-1)<] /2.

This inequality is satisfied by chosing d=3 and L=5.
For m=-1, it can be shown in a similar way that the condi-
tions are satisfied by chosing d=2 and L=6.

B. T jgitizati Z';
In case of Y'; — 0, the result Z’; needs to be digitized for on-
line output.

Let Rj=2i(Z';-Z;.1.q), we use a slight different value for
determining z; 4, which is,

zi.g= Roundg+d(R;+zi452°9) i2d
Z'i-d =0 O<i<d
Riv1 =2(R; + 2;,52°%) - pyo; - 29%d. 7; 4 (20)

For m=1, it holds laj=2i-tan-1(2-%)I< 1 for i>0. With g=1
(1Z'4<n/2), it follows,

IRies! SI2(R; + 2iy52°%) - 29+d.Z; 41 + |l
$(1/2)2d+1 424142 1] (21)

Z+1.4 15 a single digit, if
12(R; +2;4.52-(i+8) 1] 524+ .2d-L+2
From Eq.(21) the on-line condition becomes
3.0-L+242-d+14.2-d4<]

With d=2 and L=>5 the on-line condition is satisfied.

For m=-1, it holds lojl=2i{ranh1(2-))I<(10/9) for i>1. With
¢=0 (1Z'yl< In(1)) and Z=0, the on-line condition is satisfied if
3-2(L-2)4(10/9)-24-1)<]. With d=2 and L=5 this condition is
satisfied.

7. On-line generation of the scaling factor K-1

To obtain the final on-line output, the digitized results X, ;and
Y; must be multiplied with the scaling factor K-/. Unlike in
conventional CORDIC, K-/ is not a constant since p; can be zero
in the on-line case. This implies that the scaling factor cannot be
calculated in advance. A method for calculating K-/ has been
described Ercegovac and Lang [15]. They compute K2 by the
recurrence equation K2;, ;=K?; + m¢?-K?;. In the implementa-
tion the recurrence is unfolded by using n/2 stages of on-line

adders. These stages are followed by an on-line square-rooter
and -divider to obtain K-. Due to the unfolding, a relatively
large on-line delay results, which in their implementation does
not give an extra delay because it fits with the timing
characteristics of the rest of the calculations.

Here a different method of calculating K-/ is shown. The
method uses the table look-up approach, as described in [16].
This method has already been used in starting of an iterative
method for calculating the reciprocal function [17]. The method
is based on feeding the successive digits of the input operands to
a table, while the table output produces an on-line digit each
iteration cycle. If the number of input digits is large, soon a very
large table would be required. A method to reduce the table re-
quirements is to divide the product terms of the scaling factor in
groups (partial scaling factors) and to generate each partial scal-
ing factor with the aid of a table look-up system. The partial
scaling factors can then be combined to give the final function.
Fig. 2 shows this principle of operation for K.

iteration
count ¢

1 .
Piy Pigr " Pigk

| T D S

table

‘ on-line result digits

@)
table I table I
* on-line multiplier
(b)
corrected uncorrected
Cordic on-line Cordic on-line
output output
1.00 #p Otp
table correction terms
©

Fig.2 a.Table generation of (partial) correction factor,
b. Generation of the correction factor from the partial
tables, c. Correction factor hardware organization.

It can be shown that by using theorem 1 in [16] the (partial)
function

14
&lipp) = [Jr14mdy'?
i, 22)

can be generated with an on-line delay of §=1-2iy, if m=1 and

8=2-2ip, if m=-1. Since ip=0 for m=1 and ip=1 for m=-1, it

follows that K/can be generated with an on-line delay of 5=0.
Now consider the case of splitting K-/ into 2 subproducts,

10’1 n-1
K= H(1+m_¢f)‘”2.n(1+m,¢f e
i=i io (23)

where ip,=0, if m=1 and i,,=1, otherwise

From the results above it follows that a negative on-line delay
results when generating the second partial scaling factor in
Eq.(23) for ip>2. This implies that the first 2ip-I (or 2ip-2 for
m=-1) digits of the second partial scaling factor are known be-
fore the first p; becomes known. It can be shown that we have a
number of the form 0.11...11xx or 1.0....01xx (I means -I)
with 2ip-1 known digits for m=1. The latter representation might
be advantageous in a multiplier. For m=-1 the subproduct has
the form 1.00...00xx with 2ip-2 known digits.

The splitting according to Eq.(23) can be further performed
in the same way. The final scaling factor is formed by multiply-
ing the subproducts. A single partial scaling factor can be easily
generated on-line by using a table with the values of pjy pjp+;
--Pip+k as address, plus an iteration counter i (see Fig.2a). Sub-
products are combined by using on-line multipliers (one for two
subproducts, two for three subproducts etc., see Fig.2b).

For an accuracy of 2-£, only L/2 product terms of Eq.(2) are
required. A further simplification can be obtained by observing
that the higher (L/4) half of the L/2 product terms (i=L/4+1,...,
L/2) can be reduced in complexity by deleting all cross products,
because they are beyond the required accuracy, i.c. these L/4
product terms can be replaced by a single word of the form
1.00... (1p;)0 (2p;+1)0.. The memory requirements are then
determined by the partition sizes of the lower L/4 product terms
(i=ip ..., L/4). The size of the memory is 2i-2P, where p is the
number of bits in the address space, i is the iteration counter.
There are two output digits of the table. However, the signs are
known in advance, so only two output bits suffice.

Table I shows the relation between the required memory and
the number of (partial factor) partitions as a function of the re-
quired precision and Fig. 2c shows the hardware organization.
The memory requirements can be traded off with multipliers. To
rescale one CORDIC output (X;) 1, 2, or 3 on-line multipliers
are required for /, 2, or 3 table partitions. For the second
CORDIC output (Y;) another on-line multiplier is needed. Since
the generation of the partial scaling factors can all start at the first
iteration, the resulting on-line delay of the table look-up phase is

6=0. The total on-line delay of scaling factor is equal to the on-
line delay of the on-line multiplier(s) for forming the partial
scaling factors into one. The on-line delay of an on-line multi-
plier is 7 ([1], [16]). Therefore, for partition of 2 or 3 partial ta-
bles, the on-line delay for forming the scaling factor is only 7 to
2. SinCe Gppys + Saigirizer >4, the only additional on-line delay to
the on-line CORDI& algorithm is the on-line delay of the multi-
plication of the scaling factor with the digitized result (see
Fig.3), i.e. ascaling'_‘l .

8. Results and Conclusion

From the previous sections it follows that all applicable
CORDIC operations can be made on-line. The total latency per
function is given by

Tiot= n+ 6inpul + sdigilizer + 6scalingA

The results &t :5""P"‘ +84igitizer +0scaling have been summa-
rized in table II. In this table the columns denote the on-line in-
puts. So XYZ in column 1 denotes that X, Y, and Z are input
on-line, while XY in column 2 denotes that only X and Y are
input on-line. (Notice that dscaling=0 for Z since no rescaling is
required).

function on-line delays

X,Y,Z XY y4

x.5ing+y.cos¢ 6 4 6
x.sinh¢+y.cosh$p 5 3 5
tan-! (y/x) 6 6 2
(x2+y2)112 8 8 4

S 5 2

in(w), (x=w+1, y=w-1)

Table II. On-line delays of several CORDIC functions

The proposed on-line CORDIC algorithm attains speed im-
provement by introducing redundancy in the calculation cir-
cuitry. Another advantage is that on-line algorithms reduces I/O
requirement and the total latency of chained processing. For ex-
ample, in applications such as Givens rotation for matrix trian-
gularization and the transformation for singular value decompo-
sition (SVD), the angle must be computed first and then rota-
tions are performed. Using conventional CORDIC, the total la-
tency time of a triangularization step will be between 2.25n and
3n CORDIC steps in an implementation proposed by Ahmed et
al. [18]. Ercegovac and Lang [15] have an implementation with
3n+3 steps. However, their step cycle is considerably smaller
(they estimate 2.5-4.5 times smaller), because of the use of re-
dundant and/or on-line addition techniques. For the proposed
scheme in this paper the total latency is about n+12 CORDIC
steps. For a proper comparison with the above mentioned
schemes the actual step-time must be known. This evaluation
has not been done yet.

n partition I | memory size (bits) | partition IT memory size (bits)
16 4) 512 (2,2) 256

24 6) 4k (3,3) 1k

321 @® 16k 4.4) 2k

48 (6,6) 16k 4,4,4) 6k

64 (8.8) 64k (5,5,6) 24k

Table 1. Memory requiremenss of table look-up generation of the scaling factor.

The hardware modifications as compared to the conventional
CORDIC scheme are straightforward. There are two (smaller)
CORDIC-like recurrence evaluators for the correction terms
needed. Fig. 4 shows a possible implementation scheme. The
scaling of 2 as shown in Fig. 4 is fictual, it only indicates the
relative position and does not affect the weight of the result. The
critical path (i.e., the longest circuit flow propagation time) of
the CORDIC implementation is either 1 shifter, 1 redundant
adder, and 1 register, or 1 5-digits carry propagate adder, 1 se-
lection, 1 redundant adder, and 1 register. Further research
about the complexity of the implementation must still be carried
out.

Acknowledgment we thank Tomas Lang and the referees for
their helpful comments, which have greatly contributed to
improve the readability of the paper.

9. B.G. Delugish, "A class of algorithms_ for ?uton_latic
evaluation of certain elementary functions in a binary
computer,” Ph.D. Thesis, Dept. of Computer Science,
University of Illinois, 1975.

10. R.M. Owens and M.J. Irwin, "On-line algorithms for the

design of pipelined architectures," Proceedings of the Sixth
Annual Symposium of Computer Architecture,
Philadelphia, PA, April 1979.

11. J. Volder, "The CORDIC trigonometric computing
technique”, IRE Trans. Elec. Computers, EC-8, no. 3,
Sept. 1959.

12. 1.S. Walther, "A unified algorithm for elementary

functions," Spring Joint Computer Conference, 1971,

13. H.M. Ahmed, "Signal processing algorithms and
9. References architectures,” Ph.D. Dissgrtan‘gn, Dept. of Electrical
1. M.D. Ercegovac, "An online arithmetic: an overview," Engineering, Stanford University, 1982.
SPIE Vol. 495,Real Time Signal Processing VII, 1984. 14. J.C. Bu, EF.A. Deprettre and F. de Lange, "On the
- S . " optimizati ipelined silicon CORDIC algorithm", Proc.

2. K.D. Trivedi and M.D. Ercegovac, "On-line algorithms for optimization of pipe ; . ;
division and multiplication," IEEE Trans. on Computers, EUSII.PCQ-86,IS';_gt%?1 pmciszlln(gE{dIg‘)T{lggges and
Vol. C-27, no. 7, July 1977. Applications, 1T. Young ¢) 1780

. . 15. M.D. Ercegovac, T. Lang, "Redundant and on-line

3. PK-G. Tu, M.D. Ercegovac, "A radix-4 on-line division CORDIC: ipp]icaﬁon to gqamx triangularization and SVD",
algorithm," Pr: oceedings of the 8-th Symposium on UCLA Computer Science Department, Techn. Report,
Computer Arithmetic, Como, Italy, 1987. CSD-870046, Sept., 1987.

4. K.D. Trivedi and J.G. Rusnak, "High radix on-line 16. H.J. Sips, H.X. Lin, "A new model for on-line arithmetic
division," Proceedings 4-th Symposium on Compuzer with an application to the reciprocal calculation,” Journal of
Arithmetic, 1978. Parallel and Distributed Computing (to appear).

5. VG. 'Oklo'l’)dzija, M.D. Ercegovac, "An on-line square root 17. HX. Lin, H.J. Sips, "A novel floating-point on-line
algorithm," IEEE Transactions on Computers, Vol. C-31, division algorithm," Proceedings of the 8-th Symposium on
no. 1, January 1982 Computer Arithmetic, Como, Italy, 1987.

6. M.J. Irwin, "A pipelined processing unit for on-line 18. H.M. Ahmed, J.M. Delosme, and M. Morf, "Highly
division," Proceedings 5-th Symposium on Computer concurrent computing structures for matrix arithmetic and
Arithmetic, 1978. signal processing”, IEEE Computer, Vol. 15, No. 1, Jan.

1982.

7. R.M. Owens, "Compound algorithms for digit online
arithmetic,” Proceedings 5-th Symposium on Computer 19. M.D. Ercegovac, T. Lang, "On-line scheme for computing
Arithmetic, 1981. rotation factors," Journal of Parallel and Distributed

.. . . Computing, Academic Press, Vol. 5, no.3, June 1988.
8. R.M. Owens, "Digit online algorithms for pipelined
architectures," Ph.D. Thesis, Dept. of Computer Science,
The Pennsylvania State University, 1980.
X ¥Y;.z, o« ———————————— CORDIC recurrence
N 1
. . . ' N
XiaYia Zig E b digitization
‘ N EN——— partial scaling factors
. , : : forming scaling factor by
' R e B B L on-line multiplication
' l
\]
\ '

+—re

scaled on-line output

Y ...

6input 6digitizer scaling

Fig.3 Hlustration of timing of on-line CORDIC implementation.

31

Appendix A Calculation of the correction terms

In this appendix a way is shown to calculate the correction
terms AX;4+1(Xi+& Yirs) and AY 4 1(Xis s Yivd) of Eq.(4). Denote
the error of X'; and Y’; , with respect to X; and Y, as g(x) and
&(y), respectively. The error in X;47 and ¥;47 can then be
written as

Xiv1 =X +€(X) + mpy(Y'; +€(y))27
= X'; + mpiY'i-2-+ €i(x) +mpigy)-27 = X'isl +Eiv1(X)
(Al)
Yiel =Y'i+&y) - piX'i +£x)) 2
=Y - piX'i27+Ei(y) +pi€i(x) 27 = Vil +Eis1(Y)

The term g(x) consists of two parts : one part depends on the
digit x;+ sand the other part on yi.s The same holds for ei(y).
Denote ex(x)=Ax(x)+Pi(y) and ex(y)=ni(x)+¢x(y), where Ax(x)
and ni(x) are the terms depending on ;4.5 and S(y) and ¢(y)
are the terms depending on y;..s The the following relation
holds

Ak+1(x) =A(x)+mpini(x) 2°* with Ag(x)=1

Bie+1(y) =Br(y)+mpidi(y) 2% with Bo(y)=0
(A2)

Miea1(x) =Tk(X)- PicAi(x)2°F with 7g(x)=0

O+ 107) =0k(y)- PiBi(y)-27* with gg(y)=1

The error terms can then be calculated according to

e(x) = A(x)Xivs+ Br(¥)Yies = AXiv1(Xirs Yirs)

y) = M(x) Xirs+ OK(Y)Yirs = AYiv1(Xi+5, Yirs) 3
(A3)

The equations (A2) are two sets CORDIC like equations
(Eq.(1a) and Eq.(1b)) which are to be updated each iteration cy-
cle of the basic CORDIC equation. However, only approxi-
mat(cl::}éhalf the number of digits of the full word length are
needed.

32

Appendix B Estimation of the Upper Bounds on
AX g and AY ;)

The following relation hold for the correction terms
AXiy [(Xir5Yivs) and AY ;3 1(Xi1 5Yi+8)s

AX;y1(Xie s, Yivs) = AXi(Xivs, Yied) +mpi-AYi(Xivs, Yies) 27
AY ;4 1(Xivs, Yird) = AYi(Xivs, Yirs) -Pi-AXi(Xisr 5 Yi+s) -2';1)
For m=1, with AXo(X;4 8 Yi+8)=Xi+s and AYo(Xi15, Vi 6)=Yi+s
(xi+5 and yi 5 are digits with a weight of 2-++%+1), since i starts

from 0), it can be verified (e.g., simply iterating the recurrence
Eq.(B1) with a computer) that

1AX 4(xi+ 6 Yiss) £2.32 2-(i+8+1)
IAY 4(Xiv 6 Yieo) S 2.32:2:(0+8+41)

(B2)
Therefore, from Eq.(B1) and Eq.(B2) it holds,
(i+8+1) A J
A, (x. o3,) S2.322 (i+8+D) TJ+2")
=4 (B3)
(i+d+1) L 4
1AY (%, 75,9 2322 (H)-H(I+2)
=4
Since
i Fi oo Ei
H(] +27) <H(1 +27)
j=4 =4
9 -J
IT—122) sink(l)—L——<1.14
L3 1+(17) 2 2
’ [T+ 7))
=1
(sinh(x) =x-T (1 +2/(7 %)), and for j210, (1+27)<(1 +1I(P12)).
=1
it follows:
IAX ;4 1(Xis8 Yiss)! $2.652-(i+8+1)
IAY i+ 1(Xix s Yirs)) € 2.65-2:(040+1) (B4)

A similar analysis can be made for

n :
SIAX (x,3,)2 LAy, (x)]
k=i+d

The procedure is to calculate it for several small values of i, then
using Eq(B4) to estimate the upper bound. The following upper
bound can be obtained,

- i+
Z[Axi(xk'yk)'z + AY, (03] | < 3.2 forizo
k=i+8

the most significant the remaining

(@

n-2 N

N}
£

.ot

..2i v' . ‘I]~2i A
5 e |V [s

5 digits of W] (n-5) digits of Wi

-2
in+8' 2

CPA

L i+l
| REG l
v

£

i i
Xighi' 2 ViagBi2

®)

5 most significant
diis of &y
i

Yid

Fig4 a.Scheme for CORDIC iterations,
b. Scheme for correction term generation (the generation of B; and ¢;
of A and nj),
c. Digitization of the iteration result.

33

AXjyp2!

—— Register

pa| —— Carry Propagate
Adder
? e+ f-c

Redudant Carry Save Adder.
The result is shifted 1 position
to the left after each addition.

¢ is a control signal. ¢=0,1,-1
means no addition, addition and
subtraction , respectively.

are similar to that

