Concurrent Error Detection in Arithmetic and Logical

Operations Using Berger Codes

Jien-Chung Lo
Department of Electrical Engineering
University of Rhode Island
Kingston, RI 02881

Abstract

In this paper, we propose a novel approach to
designing concurrent-error-detecting arithmetic and logic
units using Berger code. Several theorems are developed
on Berger check predictions for arithmetic and logical
Specifically, the Berger check prediction is
proposed for additions and subtractions with unsigned
numbers as well as signed numbers. Berger check predic-
tion for sizteen logical operations and shift operations,
multiplication and division are given here. The proposed
scheme may provide a considerable saving in the
hardware logic (or chip area) in implementing a self-
checking ALU, and may ultimately make feasible a
single-chip self-checking microprocessor or RISC design.

operations.

1. Introduction

Arithmetic and logic unit (ALU) is the heart of a
In designing a concurrent-error-detecting
(CED) processor, the design of an ALU is unique in the
sense that its error type is different from that of the rest
of the processor. Historically, arithmetic codes [RAO74,
RAO89] were developed to handle the arithmetic errors
due to the differences in the nature of arithmetic errors.

processor.

Unfortunately, the differences in the nature of arithmetic
errors also make the arithmetic codes inefficient in han-
dling the logical operations [WAK78]. For the logical
operations, two-rail code [WAK78] and Reed-Muller code
[PRA72] were studied. Since the two-rail code is also
useful in the arithmetic operations, in practice, it is
widely used in the CED ALU’s [HAL84, NIC85, NANSS|.
But, the hardware required by a two-rail encoded ALU is
at least twice of that required by a non-encoded ALU
[NANS8S| and therefore is considered to be inefficient.
Parity codes were proven to be useful in designing
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a CED ALU through a design technique called check
prediction. In the past, a single parity code was applied
to the design of CED adders {SEL68, LAN70] and the
design of CED ALU [SEL68, RAO72]. Also, the residue
code encoded logical operations [GAR68], checksum code
encoded adders [WAK78] and the error correcting linear
code encoded adder [FUJ81] were proposed. Moreover,
the arithmetic units for the AN code with A=15 and for
the reverse residue code modulo 15 were built and used in
JPL STAR computer [AVI73]. The major drawbacks of
these designs are: (1) These designs cannot cover both
arithmetic and logical operations; and (2) these designs
cannot achieve the totally self-checking goal [WAKTS,
NANSS]|. If the arithmetic and logical operations cannot
be checked by the same code, then obviously additional
error control codes are required, and consequently the
hardware cost is significantly increased. Further, if a
scheme cannot achieve the TSC goal then it is unsuitable
for a strongly fault-secure or totally self-checking design.
Presently, only the two-rail encoded ALU’s are proven to
be wuseful in the design of self-checking processors
[HAL84, NIC85, NANS88]. One of the main reasons that
the two-rail code encoded ALU is suitable in the design of
self-checking processors is that the code is a systematic
all unidirectional error detecting (AUED) code [LO89a).

In this paper, we propose a new design approach in
which a more efficient AUED code is used in implement-
ing the CED capability of ALU. Specifically, we consider
the Berger code encoded ALU’s, since not only is the
Berger code [BER61] a systematic AUED code but it is
also an optimal one in terms of the check-bit length
[FRE62]. 1t is clear that a Berger code encoded ALU
requires less hardware than a two-rail code encoded ALU
in most cases due to the difference in the numbers of
check bits required by the two codes. However, the
Berger code has never been studied previously for either
arithmetic or logical operations. Hence, the Berger check
prediction scheme propose in this paper for both arith-
metic and logical operations is a significant advance in
the design of CED ALU’s.



the design of CED ALU’s.

In Section 2, we shall present the Berger check
predictions for add and subtract operations for different
signed-number representations - namely, signed-2’s com-
plement, signed-1’s complement and signed-magnitude
representations. In Section 3, the Berger check predic-
tions for all sixteen logical operations on two operands
will be described. The rotate and shift operations are
also considered in this section. Further, we shall extend
the Berger check prediction to array multipliers and
dividers in Sections 4 and 5, respectively. The conclu-
sions are given in Section 6.

2. Berger Check Prediction in Arithmetic Opera-
tions
2.1. Berger Check Prediction in Addition

Consider the addition of two n-bit numbers,
X=(z,, 2y z,) and Y=(y,, ', ¥2 ¥;) to obtain
the sum $=(s,, -- -, 85, 8;), with internal carries c=(e,,

-, ey, ¢1), where z;, y;, &, ¢ € {0,1}, the operation for

the ¢* bit of the two operands can be described as fol-
lows.

%+ ¥+ e =2¢ + 8

(1)
= (& + ¢ )+ ¢

Let N(X) denote the number of 1's in the binary represen-
tation of X. Then, trivially N(z) = z;. Using this nota-
tion, we give the following Lemma.

Lemma 1

N(X) + N(Y) + s = N(S) + cou + N(C)

(2)

where ¢;, is the carry input and ¢,y = ¢, .

A similar result were presented by Garner [GARS58]
in deriving the check prediction equations for a number
of arithmetic operations for single parity code. However,
in [GAR5S8], the modulo-2 additions were used for single
parity code, whereas the additions are used in Lemma 1.

The check symbol of a Berger code is the binary
representation of the number of 0's (or the complement
of the binary representation of the number of 1's) in the
information bits [BER61]. In this paper, we consider
only the first encoding scheme, i.e., counting the number
of 0’s in the information bits. For an n-bit number X
whose Berger check symbol is X,, X, = n — N(X).

For the two operands X and Y, whose Berger check
symbols are X, and Y, respectively, the check symbol of
the sum of X and Y is given as follows.

Theorem 1
The Berger check symbol, S,, of the sum S = X+Y

can be predicted as
Se=X + Y. —cin — C. + Cou

(4)

where C, = n — N(C) which is the number of 0's of the
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internal carries.

2.2. Berger Check Prediction in Subtractions

Similar to Theorem 1, we can establish the predie-
tion for subtractions. Here, we use b€ {0,1} to denote a
borrow, and B=(b,, - - - ,b,) to represent the concatena-~
tion of all the internal borrow bits.
Lemma 2

N(X) + N(B) + b, = N(Y) + N(S) + bin (5)

As shown in Lemma 2, we can find the relationship
between the numbers of 1’s in both operands and the
result and internal borrow bits. The Berger check of the
subtraction can be predicted as given in Theorem 2.
Theorem 2

The Berger check symbol of the result, S., can be
predicted as

Se=X, =Y.+ B, + by — byy (6)

Equations (4) and (6) play a central role in imple-
menting the Berger check prediction circuit for the adder
and subtractor, respectively. The implementation of (4)
and (6) needs only 1's counter and adders. However, it
should be noted that Lemma 2 and Theorem 2 are
derived for unsigned numbers. In practice, subtraction is
often performed on an adder with redundant number
representation, such as 2’s complement, 1’s complement
and sign-magnitude representations. In the following, we
shall address the Berger check predictions for different
number representations.
2.3. Berger Check Prediction for 2’s Complement
Subtraction

The subtraction operation S=X—-Y, in two's
complement ALU design, is handled by taking the bitwise
complement of Y, Y, and performing the addition
§ =X + Y + 1. However, if a carry input is required for
the subtraction, the carry input to the adder must be
complemented to obtain the result S=X-Y —¢,.
Thus, for the general case, we assume that the inputs to
ALU are X, Y and ¢;, but the inputs to adder during the
two’s complement subtraction are X, Y and &,. With
these inputs, we can have a result similar to Lemma 1 as
follows.
Lemma 3

N(X) + N(Y) + G = N(S) + cou + N(C) 7)
In Equation (7), N(Y) = Y., since the number of 1’s
in the complemented information bits must be the
number of 0's in the original information bits.
Theorem 3
For the operation § = X — Y — ¢, in two’s comple-
ment arithmetic, the Berger check symbol of the result of
subtraction, S, obtained from the 2's complement sub-
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Figure 1. Berger Check Prediction
Two’s Complement Adder/Subtractor.

traction can be predicted as

Se=X. = Y. =G+ N(O) + cou (8)

By implementing Equations (4) and (8) simultane-
ously, we have a Berger check prediction for 2’s comple-
ment adder/subtractor, as shown in Figure 1. The cir-
cuit enclosed in the dashed box in Figure 1 is a typical
2’s complement adder/subtractor. The signal “K” is use
to select the add or subtract operation corresponding to
K=0 or 1, respectively. During the add operation, the
internal carries, represented by C, are complemented and
fed into the 1’s counter. Therefore, in this case, the out-
put of the 1's counter is N(C)= C,. The 1's counter is
implemented as that in a Berger code checker [MAR7S,
LO88]. The computation of the check symbol, which per-
forms Equations (4) or (8), is accomplished by a mul-
tioperand carry save adder (MCSA).

Since ¢, is negative in Equation (4), we comple-
ment C, before it enters the MCSA. However, to have a
2’s complement form of —C, as well as to include both ¢;,
and ¢, in the computation, we add a pseudo variable §
so that the output of the MCSA is the S, as described by
Equation (4). The output of the MCSA is now
S, =X.+Y,~C,—1+6. It is obvious that § may range
from 0 to 2. Thus, we use two single bit variables o and
B8, where a, 8 € {0,1}, to represent §, such that §=2a + 8.
The relationship between K, ¢, and c,, and e and 8 is
shown in Table 1. Figure 2 shows an example of a three
inputs 4-bit MCSA with modified inputs, « and 3.

As for the subtraction, the internal carries are not
complemented, the output of the 1's counter is thus
N(C). Since Y, is negative in Equation (8), we must com-
plement Y, before it enters the MCSA. The output of
the MCSA also has a similar form as that of the add
operation. However, the definition of § differs from that
of the add operation. The values of 4, « and 8 for 2's
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Figure 2. Three Inputs 4-bit Multioperand Carry Save
Adder (MCSA) with Modified Inputs a and B.

Table 1. The Function and the Values of @ and 8 in Figure 2.

K en  cout output of MCSA § | o

0 0 0 | 8=X.4Y.—C.—cip+cou 1lo 1
0 0 1 211 O
0 1 0 0|0 O
0 1 1 110 1
1 0 0 Se=X. =Y. +N(C)=Cintcoe |0 |0 O
1 0 1 110 1
1 1 0 10 1
1 1 1 211 O

complement subtraction are also shown in Table 1.
2.4. Berger Check Prediction for 1’s Complement
Subtraction

The negative number can also be represented in
diminished radix complement form, or 1’s complement in
binary system. A 1’s complement adder/subtractor uses
end-around carry such that the carry output generated at
the first cycle is used at the second cycle as the carry
input. The correct sum is then generated at the end of
the second cycle. Since we already have the Berger check
prediction equation for the unsign number, we can
modified the circuit in Figure 1 to be used in 1’s comple-
ment operations. Figure 3 shows the BCP 1’s comple-
ment adder/subtractor. The add or subtract operation
takes two cycles to establish the desired result. At the
beginning of the first cycle, the two operands are loaded
into latches and the carry input is clear to “0”. At the
end of the first cycle, the carry output is latched to the
carry input latch. The BCP circuit will then start its
evaluation at the end of the second cycle, while the
desired sum or difference has been generated. Note that,
the « and g in Figure 3 are defined as in Table 1, too.
2.5. Berger Check Prediction for Signed-
Magnitude Subtraction
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Figure 3. Berger Check Prediction
One’s Complement Adder/Subtractor.

For the signed-magnitude representation, an n-bit
number is actually the concatenation of an (n-1)bit
unsigned number and a sign bit. A typical sign-
magnitude adder/subtractor [HWA79] is shown in the
dashed box in Figure 4. We use the notation X, to
represent the magnitude of the X such that X, =(z,_,

-, Z, 21), and z, to denote the sign bit of X. The (n-
1)-bit adder in the dashed box in Figure 4 is connected as
a 1's complement adder/subtractor. Thus, the Berger
check for the adder’s output, S can be predicted as
described in the last section. The sign bit of the
sum/difference is dependent on the control signals X, z,,
v, and ¢,.. Hence, the Berger check prediction equations
for the signed-magnitude adder/subtractor can be derived
directly from the results presented in the previous sec-
tions and are summarized in Table 2.

The Berger check prediction circuit shown in Fig-
ure 4 is similar to that shown in Figures 1 and 3. How-
ever, the MCSA in Figure 4 is a four-input multi-operand
carry save adder. Since, as shown in Table 2, the value
of 8 may vary from n+3 to —2, it may take logen + 1 bits
to represent 6°. Further, a control PLA is used to initiate
the proper operation of the Berger check prediction cir-
cuit. The functional table of this control PLA is exactly
the same as Table 2 except the generation of §°.

3. Berger Check Prediction in Logical Operations
The check symbol prediction for the logical opera-
tions were considered for residue codes [GAR68] and sin-
gle parity codes [SEL68, RAO72]. Also, in the work on
the design of self-checking processors [HAL84, NANSS],
the logical operations are handled by the two-rail code.
In this section, we shall introduce the Berger check pred-

ictions for all the two-operand logical operations. In
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Figure 4. Berger Check Prediction
Sign-Magnitude Adder/Subtractor.

Table 2. The Begrer Check Prediction
for Sign-Magnitude Adder/Subtractor.

K 2z, ¥ Cw S, = L
0 0 0 0 X +Y. -ClHza—cutCom I-cyy

0 0 O 1 1-tw

1) 0 1 0 =X, -Y, 4 C4n 412y, 4+ €0 —Cou n+l+c,
0 0 1 1 X -Y +N(C' fva—tu+Cout —Cm

0 1 0 0 1+

0 1 ] 1 1-ca

0 1 1 0 2-€m

0 1 1 1 2-con

1 0 0 ) n+4+c,,
1 0 0 1 I-c

1 0 1 0 2-Cm

1 0 1 1 —Cu

1 1 0 0 A 1-cu

1 1 0 1 +N(C* )yt +eou Tt

1 1 1 0 XY AC AN 1oy +F, +Ca € | N HZHC R
1 1 1 1 X -V, +N(C*)-yu -t +Cou —Cwm

addition, we also present the Berger check
rotate and shift operations.

3.1. Berger Check Prediction in Two-Operand
Logical Operations

prediction for

There are 16 possible logical operations on two
operands including six trivial operations, 0, 1, X, Y, X,
Y, and ten nontrivial operations. First, we examine the
three basic logical operations AND (A), OR (Vv), XOR

(®). From observing their truth tables, as shown in
Table 3, one can easily verify the following
g Ny=%+y%—(uVy) (9)
L Vy=z+y —(z/\y) , and (10)
G@u=n+y—2Au/\u) . (11)

Equations (9)-(11) were also given in [RAO72]. Here, we
apply these equations to determine the relationships in
terms of the number of 1's. For the AND operation, the
number of 1’s in X/\Y can be evaluated as

N(XN\Y) = N(X) + N(Y) -~ N(XVY)



Table 3. Truth Tables for AND, OR and XOR operations.

AND OR XOR
% % |a l 1’s lost E I 8 | 1'slost 5 % | 8 | 1’s lost
[} 0 [} [} [ o 0 0 0 ] o ]
0 1 [} 1 [} 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0 1 [} 1 0
1 1 1 1 1 1 1 1 1 1 0 2

Based on the above result, we can derive the relationships
for the rest of the logical operations on the two operands,
X and Y. The Berger check prediction for logical opera-
tions can then be readily formulated as Theorem 4.
Theorem 4

The Berger check symbols of the results of logical
operations can be predicted as follows.

S=XAY @ S =X, +Y,—(XVY), (12)
S=XA\Y @ S, =-X, +Y, +(XVY), (13)
S=XN\Y o S, =X, -V, +(XVY), (14)
S=XNY o S =-X,-Y, +(X\Y), +n (15)
S=XVY @& S, =X, +7Y, - (XA\Y). (18)
§=XVY o S . =-X, + Y, + NXNA\Y) (17)
S=XV¥ o 5 =X -Y.+NXAY) (18)
§=XVY o S =-X, -Y, +(XVY), +n (19)
S=X®Y & S =X, +Y, -2(X\Y), +n (20)
S=X®Y o S =-X,-Y, +2NEXAY) (21)
S=X @ S5 =X (22)
5=Y & & =v, (23)
S=X o S =1-X (24)
5=Y o S =n-7, (25)
§=0 o S . =n (26)
§=1 o S5, =0 (37)

3.2. Berger
Operations
Besides the logical operations described, an ALU
must also capable of performing the rotate and shift
operations. In general, there are three basic types of such
operation: rotate, logical shift (rotate through carry) and
arithmetic shift. The rotate operations are defined as fol-
lows.
Rotate Left

( zl—l’ ZI—ZI Tt

Check Prediction for Rotate and Shift

)Tt Zn ) = Tay Tpey, 0, 22, 2
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Rotate Right

(21, %y 23,22 ) (%) Zay, “ "0, T2 1)

The Berger check of the result of a rotate operation is
simply the Berger check of the operand, since no informa-
tion bit is discarded except for their position.

The logical shift operation involves the carry bit in
the operation. It is assumed that ¢;, is used as the input,
while ¢,,, represents the shift-out bit after the operation.
Logical Left Shift

(zn—lx Tn—2 '3 %1 Cin ) ‘-( Tns Tn—py "7 Ty zl)
Logical Right Shift
(Cins Zay " 75 28, 22) +— (Za, Zacr, * 70, 72, 71)

Thus, ¢, = z, for logical left shift operation and ¢, = =,
for logical right shift operation. It is obvious that the
Berger check of the result S can be predicted as

Se =X, — tin + Cou (28)

The arithmetic shift operation is used for the
signed numbers. Here, we consider the arithmetic shift
operations for 2’s complement operands. During the
right shift operation, the most significant bit is extended
to the right (sign extension). For the arithmetic left
shift, a “‘0” is inserted at the least significant bit.
Arithmetic Left Shift

(Zacts Zace, " 20, 0) = (%0, Zamy, "0, 22, 21)
Arithmetic Right Shift
(Zn, Zn, Tamyy 7, 73, 22 ) = (Zn, Gaty 70, T2 T1)

Here, we assume that ¢, = z, for the arithmetic left shift
operation and ¢,, = 2, for the arithmetic right shift
operation. Thus, the Berger check of the result of an

arithmetic left shift can be predicted as
S, =X, + cou (29)

and the Berger check of the result of an arithmetic right
shift can be predicted as
(30)

3.3. Berger Check Prediction Circuit for Logical
Operations
The effective implementation of Theorem 4 is a

Se =X, — 2y + cou

nontrivial problem. Fortunately, according to Equations
(12)-(21), we can find the following general form for the
Berger check prediction of all the nontrivial logical opera-
tions.

Se=[P1XX, + poX Yo + psXpy| + peXn (31)

where, p, and p, are either +1 or -1, pg is either 1 or 2, p,
can be one of the following: (XVY)., (XVY)., (XVY).,
(XA\Y),, N(X\Y) and N(XAY), and p, is either O or 1.
Figure 5 shows the Berger check prediction circuit
implemented based on Equation (31) for the sixteen logi-
cal operations defined in Theorem 4. There are 12 inter-
nal control signals, t,-t;,, to adapt the circuit for all the
16 logical operations as well as the rotate and shift
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Figure 5. Berger Check Prediction Circuit for
All Two-Operand Logical, Shift and Rotate Operations.

operations. The 12 control signals and § for the MCSA
are generated by a PLA, whose function is defined in
Table 4.

Among the six trivial logical operations, § =X and
S =Y are handled by passing the check symbol X, or Y,
directly to the output of the prediction circuit. For the
operations § =X and $ =Y, the output of the prediction
circuit is produced by negating the check symbol X, or
Y., respectively, and adding a constant ““n”’, the informa-
tion length. The operations S =0 is handled by generat-
ing the logic ‘0", accomplished by setting the controls t,,
tg and ¢, to “‘0”’. Whereas for the operation S =1, besides
generating a ‘‘0”, a constant ‘‘a’’ is added.

The BCP circuit shown in Figure 5 can also handle
the rotate and shift operations, as described by Equations
(28)-(30). For example, the logical shift operations
described by Equation (28) is accomplished by setting ¢,
t7, tg and ty to ‘17, and ¢4, ¢, and ¢, to “‘0”. Also, t,-t,
are ignored, since they will not affect the result of
evaluation. Therefore, when & = 0, the output of MCS4 is
equal to X, —1. The variable 6 is then generated by
examine the value of ¢, and c,, as shown in Table 4.
For the arithmetic shift operations, t,-t,; are set as in log-
ical shift operations, the only difference is the generation
of &.

From Figures 1 and 6, we find that it is possible to
merge these two circuits to form a Berger check predic-
tion circuit for an ALU that performs additions, 2’s com-
plement subtractions, all 16 logical operations on two
operands, and rotate and shift operations. In fact, the
only modification required is to add an extra input port
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Table 4.
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LRS (LLS) : Logical Right (Left) Shift

ARS (ALS) : Arithmetic Right (Left) Shift
at ““MUX” in Figure 6, for the internal carries, C, from
the ALU itself [LO89a]. Thus, although the BCP cireuit
shown in Figure 6 is not cost effective if only logical and
shift operations need to be handled, the modified cireuit
of Figure 6 is very cost effective for a typical ALU design
|[LO89a].

4. Berger Check Prediction for Array Multipliers

One of the most common multipliers is the Braun’s
unsigned array multiplier [HWA79]. The single parity
check prediction for such array multiplier was given in
[PRAS86]. Here, we extend the results obtained in Section
2 to the Berger check prediction for the array multiplier.
A 4-bit by 4-bit Braun’s array multiplier is shown in Fig-
ure 6(a), where eight full adders and four half adders are
used. Each individual adder is labeled for proper
identification. The temporary sums and carries generated
by each adder is then labeled accordingly. For instance,
the full adder labeled (3,2) receives z,/\y,, zs/\ys and cg, as
its inputs and generates the sum s3, and the carry c;,.

The input/output relationship of each adder can be
properly described by Equation (1). Then, by summing
all the equations, we can obtain

N(X)-N(Y) = N(S) + N(C") (32)

3 4
where N(C*)= 3] 3 ¢;,;. From Equation (35), the Berger

=
check symbol of the product generated by an array
multiplier with input operands X and Y, whose Berger
check symbol is X, and Y,, respectively, can be predicted
as

S, =4X, +4Y, - X, Y, - C. (33)
where C.' =12 — N(C°).

Based on Equation (33), we can implement a

Berger check prediction circuit for the array multiplier, as
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Figure 6(b). Berger Check Prediction
Array Multiplier.

shown in Figure 6(b). Further, it is conjectured that
Equation (33) can be extended to the n-bit case.

5. Berger Check Prediction for Array Dividers

As for the array dividers, the check prediction for
the quotient is impossible, since the quotient is in the
form of carry bits, as shown in Figure 7(a). In the past,
the single parity prediction array divider was proposed in
[FURS3] that predicts only the check symbol of the
remainder. To simplify our discussion, we consider only
the nonrestoring array divider [HWA79]. A nonrestoring
array divider with an 8-bit dividend, X={zg, 77, " -,
7}, and a 4-bit divisor, Y={yy, va, v2 ¥:}, generating a
5-bit quotient, @={gsy 9u 93 92 ql}, and a 4-bit
remainder, R=/{ry, rg, rq, r}, is depicted in Figure 7(a).
This array divider is constructed from controlled
adder/subtractors (CAS’s) shown in Figure 7(b). Based
on the characteristics of a CAS, we obtain the following
equations:

25 + (11®1) + 1 = 2¢62 + 751

zo + (y2D1) + €52 = 253 + 752

ro4 + (0Dgz2) + 15 =291 + 715

By summing the above equations, we have

Xs) %+ 25] Zel (y®Pg;) +1=

sl ] 2

Figure 7(a). Nonrestoring Array Divider.

Adder/Subtractor.

239

Q R

Figure 7(c). Berger Check Prediction
Nonrestoring Array Divider.

5 8 5 5 4
LYY i+ Natat Bnsg+ N (34)
Pl f2 il =} i=1
where y; =0 and ¢s=1. Let ¢;; = y;@gq; then ¢,; =y if
¢; =0,and ¢;; =¥ if ¢; =1. Thus,
L]

izu)vz,,,-=5(§ ¥ + éq,-)—‘-’-i Vi 254

fm] =2 Tl

=1 i=2

Therefore, Equation (34) can be rewritten as
N(R) = N(X) + 3N(Y) + 4N(Q) — 2N(Y)N(Q)
+2¢;N(Y)— 6g; — N(C") - N(R") + 6
where N(C*)= 26: i ¢;; and N(R")= 25] rg Since the
Berger check sy;:li(; of the remainder 'I;: =4— N(R), we
have

R, =X -7, —4Q. +2Y.Q.

+2Y,.q,+ N(C*)+ N(R")— 2¢, — 2 (35)

Figure 7(c) show an implementation of the Equation (35).
6. Conclusions

We have derived the formulas for the Berger check
predictions for the arithmetic and logical operations in
this paper. Specifically, we have derived the equations
for predicting the Berger check symbols for
adder/subtractor for the three signed-number representa-
tions, all sixteen two-operand logical operations, array
multiplication and array division. The only codes that



are previously known to handle all these are single parity
code and two-rail code. However, with single parity code,
the code itself limits the error detecting capability to only
odd number of unidirectional errors. Also, when the
two-rail code is applied the hardware requirement is dou-
bled.

Although Berger code is an AUED code, a BCP cir-
cuit that handles addition, 2's complement subtraction,
logical operations, and rotate/shift operations, is proved
to be capable of handling single and double arithmetic
errors as well as multiple unidirectional errors [LO89a].
In other words, the error handling capabilities of BCP
ALU’s are comparable to two-rail encoded ALU’s. Thus,
the BCP design is superior to the single parity encoded
ALU’s in terms of error handling capability and more
cost effective than the two-rail encoded ALU’s [LO89a).

One disadvantage of the check prediction scheme is
the delay penalty. In the single parity check prediction,
the evaluation of the parity of the sum is started after
the duplicated carry circuit generated the duplicated car-
ries. Although in the BCP circuit, the carries are from
the ALU itself, the Berger check evaluation cannot be
started until the ALU generated all the carries. This
means that the total delay time of the ALU is the sum of
delay of ALU and that of the BCP circuit. A two-rail
encoded ALU will not have such impact on the delay
time. However, when the entire data path is considered,
the time penalty induced by the proposed BCP scheme is
about the same as that by a two-rail encoded ALU. For
instance, a typical critical path in a data path is to load
operand from the register file, process by ALU and then
store it back to the register file. Since it is impractical to
encode the register file in a two-rail code, due to the high
hardware requirement. Let us assume that the register
file is Berger encoded similar to that used in [NANSS|. A
transcoder is therefore required to translate the two-rail
code words to Berger code words, and vice versas. The
delay time introduced by the transcoder is about the
same as the BCP circuit, because it is basically a 0’s
counter, as in the BCP circuit. Moreover, in designing a
32-bit RISC processor {LO89b|, a four-stage instruction
pipeline is used such that the evaluation of the Berger
check symbol is overlapped with ALU’s or shifter’s func-
tion. In that case, the delay penalty induced by the BCP
circuit is omitted, and the processor’s processing speed is
basically the same as a non-Berger-encoded ALU.

In sum, we can see that the ability to predict the
Berger check is significant since it leads to a reduced
hardware implementation of a processor with concurrent
error detection capability.
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