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Abstract

Square root non-restoring algorithms operating with a radix
higher than two (but power of 2) are discussed. Formulae
are derived delimiting the feasibility space of the class of
algorithms considered as a function of the different param-
eters. This definition leads to the determination of some
of these parameters; in particular, it is possible to com-
pute the number of partial remainder bits to be inspected
for digit selection and the number of operand bits to be
inspected to generated the first radicand value, as both
parameters have a relevant impact on the implementation.
Finally, the specific case of radix 4, digit set {—2,-1,0,+1,
+2} and partial remainder represented by the sum of 2
numbers is considered.

1 Introduction

The possibility of implementing an ever increasing num-
ber of devices in a single integrated circuit has attracted
attention to the design of arithmetic units working with a
radix higher than 2. In fact, the additional hardware made
available by technological advances may be used to increase
the speed of arithmetic circuits, by performing computa-
tions using higher radix representations. An example of
this trend is the INMOS T800 transputer [9], which inte-
grates on a single chip both the processor and a floating
point unit performing radix 8 multiplication and radix 4
division.

Square root has received less attention than the other ba-
sic arithmetic operations, because it is used less frequently;
nevertheless, square rooting is mandatory for the imple-
mentation of the IEEE 754 floating point standard [10].
One of the first definitions of a non-restoring algorithm [1],
[14] for square rooting may be found in [12]. More re-
cently, square root algorithms for on-line arithmetic have
been studied in (5], [6], [13]. These papers give some gen-
eral formulae to achieve the convergence interval and digit
selection. The algorithms presented are developed under
the assumption that the digit set is maximal, that is, each
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digit ranges from —(B —1) to (B —1), where B is the radix.
Square root computation for non-redundant operands is
the subject of [11], where a thorough discussion and new
high-speed algorithms for the radix 2 case are presented.
Specific algorithms for higher radix square rooting are pre-
sented in [8] and [15]; the latter, in particular, uses a non-
canonical digit set {—1,~1/2,0,1/2,1}, so that the same
hardware unit for both division and square root can be
used. A square root/divide unit is also presented in [8],
but using a radix 4 canonical digit set.

The present paper discusses the major aspects of non-
restoring square root algorithm, with the operand repre-
sented with radix higher than 2 (but integral power of 2).
In particular, this paper presents a set of formulae which
are useful to evaluate design tradeoffs for the implementa-
tion of a square root extractor; the formulae presented are
valid for any radix and digit set in the class considered.
The only assumptions adopted are:

1. The value of the radicand X is represented in non-
redundant form;

2. X belongs to the interval [1/4,1);

3. the square root value Y is represented in non-redun-
dant form.

In section 2, a reference implementation of a square root
unit is discussed to show the tradeoffs related to its imple-
mentation and to define all the parameters considered and
their impact on the implementation. In section 3 the re-
gion of convergence and the intervals for digit selection are
analyzed for a generic non-restoring algorithm. In section 4
a class of algorithms is presented, and the corresponding
selection rules are derived. A short analysis of the problem
of the determination of the lookup table is the subject of
section 5. Finally a practical example of application for
the case of radix 4 and digit set [—2,+2] is provided in
section 6.

2 Hardware unit

The algorithm for square root computation considered in
this paper is based on the concept of completing the square:



Xi=Xi—(2Yia+uB B =X, - ¥}
or in the form

X; =BX,, - (Y1 +uB )y = (X0 - Y)B' (1)
where )
Y=Y .+uB™ (2)

Table 1 summarizes the symbols used and their definitions.
Although the result digits belong to D,, it is assumed that
the partial result Y; is always represented in non-redundant
form, because the new digit produced at each step is input
to an on-the-fly conversion mechanism [7] producing the
corresponding irredundant representation of Y;.

and X! = X.B'

Note that the iteration index p and the number of bits i
of the partially developed result are, in general, different
(but correlated) entities. In particular, in this paper the
computation of the square root value is carried out in two
different phases. In the first phase an initialization pro-
cedure is performed by determining the most significant
k bits of the result. Then, this is followed by the second
phase, where, with a recursive process based on (1) and on
the iteration index p, the subsequent digits of the result
are computed. It is assumed that p = 0 during the ini-
tialization phase. It turns out that the relation between :
and p is as follows ¢ = k/b + p. As k is not necessarily an
integer multiple of b, the value of ¢ may be a rational num-
ber, however b - ¢, which is the number of bits produced,
is always integer. Observe that the non-integer values for
i are caused by the initialization phase, which introduces
a fixed shift in both the result and the partial remainder
and this does not affect from a practical point of view the
subsequent operations. In the rest of the paper, the algo-
rithms will be analyzed only referring to the parameter i,
since this choice allows a homogeneous notation to be used
for both phases.

The initialization phase plays two different but very impor-
tant roles in the whole algorithm. The first is to produce a
sufficient number of fractional bits kr of the result so that
the corresponding shifted partial remainder belongs to the
region of convergence. The second role is to provide a suf-
ficient number of fractional bits k of Y; to start the second
phase of the algorithm using digit selection intervals inde-
pendent of i. From the work in (3] it is known that, if the
number of fractional bits to be produced during the first
phase is k, both requirements are satisfied.

An unit carrying out the above specified algorithm may be
implemented in several possible ways. However, in order
to explain the impact on the implementation of the results
presented in this paper, the structure shown in Fig. 1 will
be taken as a reference model of the square root unit; it is
worth noting that, among the possible models, this is one
with the most popular implementations [8], [15] in parallel
units. In Fig. 1, some of the most important symbols, as
defined in Table 1, are indicated with their length in bits.
The arithmetic core of the unit is the adder-subtractor to-
gether with the associated shifter by one digit position,
which implement the recursion step (1). As the result of
this operation is not strictly needed in irredundant form,
the value of X is often obtained in a non-assimilated carry-
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Table 1: Definitions of symbols used

P iteration index; (p € N+)

i number of digits of the square root value which
have been computed

B = 2% radix (b > 0 and integer)

X partial remainder after the computation of 2
digits of the result

X! shifted partial remainder after the computa-
tion of ¢ digits of the result; X; = X;B’

X,X, radicand

N number of bits of the radicand

Ds = {-s,...,0,+1,...,+s—1,+s}; digit set (s
is integer and s < B — 1)

Yi i—th square root digit: y; € Dg

Y; partially developed square root with i digits
(Yo=0and Y; = Yi_, + %B~)

Y,Y, square root value

6 number of fractional bits of X ; which are in-
spected for digit selection

f number of bits to the left of the point of X,
which are inspected for digit selection

X:, truncated value of X, to the §—th fractional
bit in non redundant representation

r = f + &; total number of bits of X;_,

€ =X;,—Xr; e€(ep,eq), withep < ey

Ae =€y — €L

k number of fractional bits of ¥; which are in-
spected for digit selection

% truncated value of Y; to the k—th fractional bit

sum form, in order to avoid full carry propagation through
the adder. This advantage is paid for when it is neces-
sary to select the new root digit, because the selection is
based on the interval within which the new value of X lies
within; as X is in redundant form, this operation requires
the reduction to irredundant representation of the first =
bits of X, by means of carry-look-ahead (CLA) adder. Of
course it would be nice to keep r as small as possible, be-
cause it influences both the size of CLA and the size of the
digit selection table (DST); on the other hand, the value
of r depends on the representation of X;, through ¢; and
ex. The size of DST also depends on the number of bits,
k, of the value of ¥ determined through the lookup table
(LT) during the initialization phase Also the value of k
and r are correlated. Finally, the block DM performs the
preparation of the second operand in the right side of (1),
which basically requires the multiplication of Y;_; by the
new digit; this multiplication is often avoided by taking
advantage of the small value of the multiplier. Although
the digits y; € D,, the block labeled Y; in Fig. 1 is able to
produce the partial and final results in irredundant form,
by using the on-the-fly conversion mechanism {7].

The following sections will show how it is possible to re-
late the values of all the parameters of the unit in Fig. 1
discussed above; this analysis is valid for any radix, sym-
metrical signed digit set and representation of X;. The



relationships between all these parameters will allow the
designer, once the radix and the digit set have been se-
lected, to determine the representation of the operand and
the result of the adder, and then obtain the minimum pos-
sible sizes for CLA, LT and DST, as well as the contents
of LT and DST.

3 Square rooting algorithm

3.1 Region of convergence

The region of convergence of the algorithm is determined
by considering the transformations of the shifted partial re-
mainder when the square root algorithm implies a selection
respectively of the largest and smallest digits of the digit
set. The details of the operations which lead to the final
result can be found in (3]. Specific region of convergences
(and corresponding selection rules) have been computed in
the case of radix 2 square rooting, and can be found in [11]
and in [12].
It can be demonstrated that the largest region of conver-
gence of the square rooting algorithm for 7 > 1 is expressed
by relation (3).

—29Yi1 + Bn?B™ < X[, < +29Yi + Bn’BT (3)
where

s
T=B-1

is also called index of redundancy and it is always 1/2 <
n < 1. It can be observed that for i = 0 in general, X' does
not belong to the region of convergence. Moreover, it can

be demonstrated [3] that, in order to have a correct square
root extraction, Theorem 1 must hold.

Theorem 1 The first “digit” of the square root value y,,
satisfies the relation (B/2) <y, < B. Ifn =1 it is possible
to reduce the range to (B/2) <y, < B.

The importance of the region of convergence is strictly re-
lated to the determination of the minimal number of bits
f of each partial remainder Z’_l which lie before the point
and which need to be examined together with the é frac-
tional bits in order to perform the square rooting process.

Let us recall the expression of the region of convergence.
For all the possible values of X7, which belong to the
region of convergence, we have to derive the domain of
the corresponding truncated results X; ;. Since X; ; =
X!, — e with e, < ¢ < eg, and iterations occur for values
of i > k/b+ 1, which however implies ¥;_; < (1 — BB™),
all the values X ; which fall within the region of conver-
gence, certainly originate truncations X:_, which satisfy
the relation (4) below.

~m—eg <X <M-es 4)

The value f must allow the representation in two’s com-
plement of the largest absolute value of the two bounds of
the relation (4).
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Figure 1: The layout of the square root extractor



3.2 Intervals for digit selection

The bounds of the intervals for digit selection can be com-
puted with a similar approach to the one followed for the
determination of the region of convergence. As pointed out
in [4], (although this paper refers more specifically to an
application of DeLugish algorithms), the intervals for digit
selection are derived by requiring that the new shifted par-
tial remainder still belongs to the region of convergence of
relation (3). As described in the detail in (3], the interval
which causes the selection of the digit y; = 7 for steps: > 1
results as

26,Yi, + B¢IB™ < Xi, <20,Y;, + BOIB™ (5)

where ny
nrJ
é; = 5 (6)
For the first steps it is necessary to make use of a lookup
table which implements the relation (29) which will be in-

troduced in section 5.

-n+7J

and 6; =

3.3 Remarks

From these results we observe that the project of a higher
radix square root extractor involves the design of two sub-
units: a lookup and a selection sub-unit. The task of the
lookup unit is to carry out the initialization phase with the
determination of some digits of the final result (i.e. a start-
ing value ¥), by inspecting some bits of the first radicand
X. The aim of the lookup table is to produce a convenient
transformation of the first radicand into a shifted radicand
(for a defined starting value of ¢) which lies inside the region
of convergence. Moreover, the determination of the “first”
k fractional bits of the result, which are required by the
iterative process of the second phase, can be accomplished
referring again to the lookup table. Conversely, the task of
the selection sub-unit is to perform the step-by-step root
extraction. The layout of the complete square root ex-
tractor, (sketched in Fig. 1), has already been extensively
described in section 2.

In this paper we will focus our attention mostly on the
design of the selection sub-unit and, in particular, on the
design of its selection table. In fact, as the extensive com-
putations can show [3], the project of the lookup table can
be, for most parts, derived by following a similar approach
to the one which is shown below.

In section 4 the elimination of the dependence of the bounds
of the relation (5) on ¢ will be examined, followed by an
investigation of the evolutions of the same intervals when
the values Y;_; and X, are inspected only over a reduced
set of bits. The goal will be to find the minimal number of
bits of Y;_; and of X, which have to be inspected so as
to ensure correct digit selection.

4 Selection table

As has been outlined in a previous section, the square root-
ing process starts with a convenient lookup in a table which
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returns a result ¥ in non redundant form over k fractional
bits. In our assumptions this value is stored in a register
and left unchanged even if successive iterations would allow
it to differ from the first bits of the square root ¥ under
computation. Since the value ¥ will be used as an entry
to the digit selection table, this assumption can imply sim-
pler hardware circuits. From Theorem 1 it is clear that
1/2 < ¥ <1 for § < 1, a range which can be reduced to
1/2 < ¥ < 1 for n = 1. The square rooting process then
starts from ¢ = (k/b) + 1.

From the definition of ¥ it is clear that for n — oo
~ 1 —~
Y. € |[max{Y — 727k, E},min{Y + 727k, 1})

because 2% is the maximum value which can be repre-
sented with an infinite sequence of bits starting from the
(k + 1)—th fractional position with the digit set D,.

Besides,
Yir€ [max{V - (27 - q2-(-%), 1,

min{¥ + (n27% — n2-G-1b), 1}] )
To perform the truncation of Y;_; into the value ¥ cor-
rectly it is necessary to remember the assumption & > 0.
Since the non-linear operators max and min appear in re-
lation (7), it is necessary to split the analysis into three
sections, namely 1/2 < ¥ < 1,7 =1/2 and ¥ = 1. More-
over, for each section separate investigations have to be
carried out for the digits j < 0,7 =0 and j > 0.

4.1 Analysis of the case 1/2< ¥ <1

4.1.1 Selection rules

Let us consider the negative digits, that is j < 0. From
their definition in equations (6) it follows ¢; < 0,68; < 0.
The reduction Y;_; — Y changes the lower bound of the
interval (when j < 0), i.e. relation (5), into a value which
does not depend on 1.

b;
2)
<245Y — 727 (8)

A similar reasoning leads to the determination of the new
upper bound and the generic new interval which is valid
for negative digit selection and which is independent of the
value of 1.

20;(Y —927%) < X7, < 26,(Y + 9274

2¢;Yi_1 + B¢?B™ < 26,(Y —n27* + BB (n +

9)
With simple passages it is possible to determine the expres-
sions of the new intervals for j = 0 and j > 0. The results

are similar to the one expressed in relation (9). We now
apply truncation on the remainder X ;. In other words,

we deal only with }’(\‘*_1 which represents the value X[ ;
only from its most significant bit to the 27¢ weight. Then,

j(\i'_l €[X, —er,X;, —¢€H]
The selection rules of digit y; = j result



J<0;

26V ~ n27% — er < X7, < 26;[Y + 927 ~ en (10)
=0

2¢0Y —927%] —ep < X1 ; <26[Y — n27% — ex(11)
i>0;

26;(Y + 02 —er < Xz, < 26,[¥ —n27%] —en(12)

The relations (10), (11), (12) express the widest conditions
which are still conservative with respect to the relation (5).

4.1.2 Discretization

The values of the bounds are expressed in N bits just as
the radicand X is. Therefore, digit selection by means of
the relations (10), (11), (12) would involve a comparison
between numbers which are N bits long. Without alter-
ing the validity of the algorithm it is possible to limit the
tests required by relations (10), (11), (12) to comparisons
between values » = f + é bits long. In this section the
discretization process of the bounds of the intervals will be
analyzed, in order to obtain a new set of intervals which
completely cover the range of the X values, leaving no gaps.

Let us consider the intervals corresponding to two consec-
utive digits j —1 and j. In order to ensure a correct square
rooting process it is necessary for the corresponding dis-
cretized intervals to be at least consecutive with no gaps
between one interval and the next.

Let us denote with

low; y < X7y <upjy and  low; < X7, < up;

the two selection intervals (in analytical form) correspond-
ing to the digits j ~ 1 and j. It is known that the dis-
cretization process does not introduce gaps between the
upper bound of one interval and the lower bound of the
other if

up;j—1 — low; >0 (13)
A correct result can be obtained from the discretization
process if the relation (13) is satisfied for all the intervals
in the original form. However, the relation (13) does not
always provide the best results; even if the relation (13) is
not satisfied, there could be some cases where the specific
continuous values of the bounds after discretization, do not
insert any gap between one interval and the next. We define
as Truncation Factor, (and we represent it with the symbol
L), a multiplicative coefficient of the discretization step D
which allows the relation (13) to be generalized.

Upj-1 — lO'U)j Z "Lf -D (14)

When L; = 0 relation (14) becomes relation (13). More-
over, it is easy to prove that the condition Ly > 1 intro-
duces gaps in the discretization process. Therefore, using
the relation (14) with Ly = 1, it is possible to obtain the
lower limit on the number of bits (k,§) which have to be
inspected. Actually, it is not guaranteed that this bound
can be reached, since the intervention of L; = 1 depends
exclusively on the specific values of  and B.

We perform our computations imposing the conditions ex-
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pressed in relation (13), leaving the discussion of how to
use the relation (14) with D = 27% to section 4.4.
Before applying relation (13) between the intervals of the
two consecutive digits {j — 1,7}, it is necessary to split the
analysis into two cases: j < 0and 7 > 1.
If j < 0 then 6;_; < 0,¢; < 0. The imposition of rela-
tion (13) on the expression (10) with j — 1 = —s identi-
fies the critical situation which is represented by expres-
sion (15).
217—1)A Ae 2n(B-1)-1 k
Y>—+|————|7n2 15
( B =3 " B K (15)
A similar approach is followed in the alternative case j >
1. The results coincide with the expression (15). Then,
expression (15) is the basis of a formula which correlates
the values k and § (which is hidden inside the term Ace).
It is necessary to remember here that in this section we
are working under the condition 1/2 <Y < 1. Therefore,
by substituting into expression (15) the value min{Y} =
1/2 + 27%, we obtain the following result
29111 _ Ae  [29%(B-1)-3n+1] ..,
o> =t A T
R T e e EC
which yields the condition (valid if the argument of the
logarithm is positive)

2m*(B —1) - 37+ 1
k2 [‘°g’( H2n 1)~ BAc H

2

(17)

4.2 Analysis of the case ¥ =1/2

4.2.1 Selection rules

A preliminary consideration is necessary. Since we are
working with 1/4 < X < 1, then would be 1/2 <Y < 1.
Therefore, for if X_; is negative, the partial radicand must
be Y;_; > 1/2. If not, a negative digit would be intro-
duced in the computation of Y which would be impossible
to recover. This would lead to a final result of less than
1/2, which is contrary to the hypothesis. Hence, (remem-
bering that in this section ¥ = 1/2), X7, < 0 implies
Yo, > ¥V 4 2-G- This, after some passages, yields the
complete summary of the selection rules for digit y; = 7,
which express the widest conservative conditions with re-
spect to relation (5).

F<0; 20;Y —ep < Xp, <26,[¥ +m27% — e (18)
200 — €1 < X7y < 26,Y —ep (19)
2¢;[Y +927% —ep < X7, < 20,7 — ey (20)

i=0
3>0;
4.2.2 Discretization
Again, by following the same approach as in section 4.1.2,

and remembering that (in this paragraph) ¥ = 1/2, we get
to expression (21).

[277 - 1] % > %5 + [f/’(B —2)] gk

B B (21)



Finally, we obtain the condition {valid when the argument
of the logarithm is positive)

2 —
k> [10& (M) ]
4.3 Analysis of the case ¥ =1

(22)

Although, the case Y =1 is not involved in the equations
for the minimization of k and § since the critical situations
hold for values of ¥ near 1/2 (see the expressions (15) and
(21)), it is necessary to find an analytical expression for the
intervals so that the solution can be completed. Since the
computations involved are similar to the ones illustrated
in the previous sections, we only mention the results. The
complete summary of the selection rules for digit y; = j,
which express the widest conservative conditions with re-
spect to relation (5), results

i<

26,V —n27* —ep < X, < 20,7 —ewr (23)
3 =0

2oV —727%] —er < Xry < 200[V — 727+ — ex(24)
1>0

26, —ep < Xp, <26,(¥ —n27¥ — ey (25)

4.4 Remarks

In the previous sections we have presented a set of formu-
lae which define certain conditions which can be used to
determine the values of k and 6. The task of this section is
to discuss the results, in order first to determine the con-
dition which is the most restrictive and second to identify
the pair of values (k,§) of interest to the designer. A com-
parison between the expressions (16) and (21) shows that
the most restrictive condition, namely the expression (16),
occurs when ¥ = 1/2 + 27* which is in every case a com-
mon value to both minimal ¥ ranges when 1 < 1 and when
n = 1. Actually, since B > 2 it is possible to adopt ex-
pression (17). Actually, the relations (10), (11), (12), (18),
(19), (20), (23), (24), (25) can be joined together in a more
compact form.

7<0 — 2¢;A—e <X, <20;B,— ¢y

F=0 — 2¢oAr—er < X7, < 200Ax —cn  (26)

j>0 — 2¢;Bp—ep < X7, <204k —ex
where

-~ 1 ~
A = [max(Y — n27F, 5)] and By = [min(Y + 527%,1)]

Because the condition (17) is derived from relation (13), it
expresses a sufficient relation which a pair of values (k,§)
must satisfy in order to guarantee a correct square rooting.
However, the choice of the effective values k,§ which are
necessary for the physical implementation of the square
root unit, is strictly related to a function of cost Fg, i.e.
it depends on technological constraints. F¢ is deduced by
observing that k and § affect in different ways the size of the
table of the selection rules, the size of the addition circuits,
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the dimension of the lookup table for the first phase, the
number of data paths and so on.

The function of cost F¢ cannot be simply determined with-
out any information concerning the design details and the
technological constraints related to the implementation.
The results presented so far may be used for the main
purposes to identify constraints on the values (k,§) which
define the feasibility region representing the domain where
the designer has to search for the best solution, and to of-
fer methodologies with which to determine the contents of
both the lookup table (if any) used in the initial phase,
and the digit selection table. In order to determine the
feasibility region, it is necessary to take into account the
following considerations:

1. the values k and & have to be integers;

2. the results which are provided by expression (13) are
related to a sufficient condition; Ly > 0 could improve
them.

Actually, from the second consideration, it follows that it
is possible to identify two types of regions. The first is a
sufficient region and obtained by considering the sufficient
condition (13) (where it is implicitly assumed Ly = 0),
which leads to (16) and (17). Within this region it is guar-
anteed that for all the pairs (k, §) belonging to this region
it is possible to obtain valid digit selection tables. It repre-
sents the largest domain for which this is true. The other
region is obtained from (14) with Ly = 1. By applying the
same methodology used to get relations (16) and (17) from
(13), it is possible to derive from (14) formulae (27) and
(28) which define this extended region.

2p-171 _ (Ae —279%) 2n2(B—-1)-3np+1| __
7’5 J3275 +[ B }N
2 (27)
2 (B-1)-3n+1
b= [b“’ (%(217— - %(As—z-s)) ] (#)

The eztended region includes the sufficient region, since if
(16) holds for a pair (k,§), then (27) also holds, but the
converse is not necessarily true. The complementary region
of the sufficient with respect to the eztended region, in-
cludes pairs (k,8) where (14) holds only with 0 < Ly < 1.
As Ly > 0 violates the sufficient condition expressed by
(13), it is not guaranteed that it is possible to obtain a
valid digit selection table for all the pairs (k,8) of the com-
plementary region. Since L; cannot be controlled by the
designer, but is a consequence of the discretization process,
the complementary region could be analyzed by checking
the validity of the selection tables corresponding to all the
pairs (k,8) of interest to the designer. A general formula-
tion of the problem in terms of all the possible values (B,7)
can be approached only by introducing the coefficient L.
This is because it is not possible to study the specific nu-
merical properties of the single coeflicients in such a general
case, as has been possible in the particular cases presented
in 2], [5], [6], [11] and {13]. At this point, it is worth noting
that Theorem 1 coupled with the presence of the register
for Y, avoids, when i = 1, the need of having the entries
¥ =1/2 and ¥ =1 in the selection table.



5 Lookup table

The design of the lookup table can be, for some parts (see
[3]), derived from the analysis which we have provided in
the previous sections. However, it can be observed that a
lookup table is necessary only for k > 0 if n < 1 and for
k> 1if n = 1. The key formula, actually relation (29),
which rests on the basis of the determination of the lookup
table, can be derived directly from the expression governing
the region of convergence.

(?—7]2_")2—-6‘\’[,S;\:S(?-I-T]z_k)z—ixy (29)
where m is the number of fractional bits of X which enter
the lookup table and X denotes the truncation of X to its
m — th fractional bit and where ex = X — ;X;, with ex €
(EXL,EXH) and exp < exg, and Aex = exg — exr with
Aex > 27™ As it has been illustrated, the effective value
of the number of fractional bits of X has to be computed
by determining the minimal m which provides a correct
lookup table. This is true because the function of cost of
the lookup table depends only on m. Again, in most cases,
the number of tests to be performed is very small, since it
can be demonstrated [3] that for p < 1itis k < m < mpgeq,
and for p =1 it is (k — 1) < m < mpq, with

(30)

Mimaz = k + {losz (m) 1

6 A case of study: radix 4 square
rooting

Although two possibilities exist for the radix 4 square root
extraction, namely 7 = 1 and = 2/3, only the latter will
be considered since it involves simpler hardware circuits.
As in [11], we will consider X, represented in carry-save
form. In other words, let Ae = 2.27% B = 4,7 = 2/3,
and ef = 0. In the complementary region we consider the
following pairs which correspond to small values of (k,§):
(k=4,6 =5),(k=5,6=5),(k=26,6=4),(k=16=
4),(k = 8,6 =4),(k=9,6 =4),(k = 10,6 = 4) The com-
putation of the corresponding table contents shows that
only the pair (k = 5,8 = 5) provides valid results.

The intervals for digit selection in the case (k = 5,6 = 5)
are reported in detail for each ¥ in Table 2 and correspond
to Ly = 1/6. It is worth noting that the lower and the
upper bounds of the intervals, which correspond to the
most negative and most positive digits respectively, are in
effect the bounds of the region of convergence, and have to
be computed by means of relation (3), or in a general form
by relation (4).

In order to determine the i — th digit y;, it is necessary to
enter Table 2 with the two values ¥ - 2* and X | - 2%. The
value ¥ - 2* determines the row of the Table containing the
intervals for digit selection, and the value of j&;{‘_l - 2%, by
means of such intervals, selects the digit y;. For example,

Table 2: Radix 4 : the intervals for digit selectionfork = 5,6 =5

digit y;
Yookl -2 -1 0 1 2
hi. [ lo. [hi. || lo. [hi. [[lo. | hi. | lo.
16 -14 | -13 (-5 -5 | 3 3111 || 12
17 -144(-13] -5 -5 | 3 3 111 || 12
18 -15|-14 ] -6 || -5 | 3 4 |12 | 13
19 16 (-15| -6 || -6 | 4 4 113 ] 14
20 -16 |[-16 | -6 || -6 | 4 4 |14 | 14
21 -17)-16 1 -6 || -6 | 4 || 4 |14 || 15
22 -18||-17] 6 || -7 | 5 4 |15 | 16
23 18| -181 -6 || -7 | 5 4 116 || 16
24 19 (<19 -7 || -7 | B 5 |17 || 17
25 -20|(-20 -7 -8 | 6 5 |18 || 18
26 -20|(-21] -7 -8 | 6 5 |19 || 18
27 21 |[-21) -7 -8 | 6 5 19 || 19
28 22 (-22 -7 -9 7 5 20 || 20
29 22 |(-23 -7 -9 | 7 5 |21 || 20
30 -23|(-24] -8 -9 7 6 22|21
31 -24 |[-25| -8 -10| 8 6 |23 || 22
32 24 |1 -26 | -8 || -10 | 8 6 |24 || 22
Table 3: Radix 4: the lookup table for k =5,§ =5
|| intervals | Y .2k |
32 < X.2m < 33 16
34 < X.2m < 38 17
38 < X.2m < 42 18
43 < X-2m < 47 19
47 < X.2™ < 52 20
52 < X.2m < 57 21
57 < X.2m < 63 22
63 < X.2™ < 69 23
69 < X.2m < 75 24
7 < X.2m < 81 25
81 < X-2m < 87 26
87 < X.2m < 94 27
94 < X.2 < 101 28
101 < X.-2m» < 109 29
108 < X.2m < 116 30
116 < X.2m < 124 31
123 < X.2m < 127 32

the digit selected by observing Table 2 when Y.22=18
and X, -2° = —4is y; = 0, while when X[, - 2% = T is
yi =1

After the first lookup, the second phase starts with : =
k/b+1 = 7/2. From relation (4) the number f of in-
teger bits of X7 ,, can be computed. Since it is neces-
sary to represent in two’s complement quantities in the
range (—67/48,4/3), f = 2 bits are sufficient. Actually,
the global inspection of r = f +§ = 7 bits of X7, is neces-
sary and sufficient to perform the correct square rooting.



This is an improvement with respect to the 9 or 10 bits
of [15] and the 8 bits of [8]. With reference to the rela-
tions in section 5, it can be foreseen that, for Aex =2™™
and €xz = 0, which correspond to a radicand X given in
non-redundant form, it follows that 5 < m < 7. Actually,
the computation of the lookup table, which is reported in
Table 3, yields a first global inspection of m = T bits.

7 Conclusions

This paper has presented a set of formulae delimiting the
feasible space of all the non-restoring square root algo-
rithms, by correlating radix, digit set and internal repre-
sentation of the partial remainder. Moreover, it has been
shown that it is possible to develop a methodology for com-
puting the contents of the lookup tables required for digit
selection and for obtaining the initial radicand value. The
definition of the feasibility space has been used to mini-
mize some important parameters, such as the number of
bits of the partial remainder to be inspected to determine
the new result digit and the number of radicand bits to be
inspected to generate the first root value.

The methodology presented has been applied to the practi-
cal case of radix 4, digit set [—2, +2] and partial remainder
represented as produced by a carry-save adder; the algo-
rithm obtained reduces the bits to be inspected for digit
selection from 8 [8] or 9 [15] to 7, thus improving both
speed and complexity of the whole unit.
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