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Abstract: We determine for which roundings addition
in the floating-point screen has representable rounding error,
which roundings are implied by truncation of digit strings in
different radix systems with contiguous digits, and how many
additional digits (including possibly a sticky bit) have to be
kept in such systems in order to perform a given rounding
correctly. Throughout the paper, we emphasize clean sepa-

ration of approximation from representation.

1 Introduction

The aim of the paper is to show that certain interesting prop-
erties of roundings and representations hold at a fairly gen-
eral level. We restrict our attention to roundings of real
numbers.

In Section 2 we define roundings by means of two param-
eters for each basic interval of the screen. These parameters
determine the dividing point of the interval and the direction
in which the dividing point moves under rounding. We char-
acterize roundings into the floating-point screen for which
the rounding error of the sum of two representable numbers
is itself representable.

In Section 3 we show that radix systems in which trun-
cation and lexicographic ordering obey natural monotonicity
conditions can be characterized as systems with contiguous
digit sets. Furthermore, these systems with slight modifi-

cations yield unambiguous and complete representation sys-
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tems. Our treatment inclndes negative-base, signed-digit,
and sign-magnitude systems.

In Section 4 we examine the interplay of ronndings and
representations. First we ask what kind of roundings ave in-
duced by truncation in different systems. Then we introduce
a notion of locality which defines how many digits after the
truncation point have to be kept to determine the' result of
rounding. We also allow for the possibility of a residual (or
sticky) bit, calling a rounding which requires it quasi-local.
We show that the locality of a rounding equals the num-
ber of digits preceding the extremal tail in the digit string
representing the dividing point of an interval.

As nsual, we shall denote the set of integers by Z, and
the set of reals by IR. The funclion round(x) : IR — Z

maps x € IR to the largest integer nearest to .

2 Roundings

Following Kulisch and Miranker [1], a subset S of a partially
ordered set {M,<} is a sercen if for every a € M the set
{x € §; « < a} contains a largest element, and {r € S; & >

a} contains a least element.

Proposition 1 A sct S of reals is a screen in R if and only

if S is closed, and unbounded in both directions.
We omit the easy prool.
Definition 1 Let S be a real screen. A function

f:R— S



will be called a rounding into S if

(A1)
(A2)

z € S implies f(z) = z,
£y € Rand z < y imply f(2) < (5).
An interval [a, 8] such that a,b € S and a < = < b imply

x ¢ S will be called a basic interval of S.

We note that functions which satisfy (A1) and (A2) are
called monotone roundings in [4], and optimal roundings in
[7] and [1].

Let * € IR. Define

v(r) = max{reS;r<z},
Alz) = min{reS;r> z},
z) = Ax)—vi(z).

For every = € IR, [v(z), A(x)] is a basic interval of S, and
v(z) <z < Az). Iz ¢ S, then Y(z) < = < A(z), while
for x € 8, v(x) = ¢ = A(x). Both v(r) and A(z) satisly
(A1) and (A2), which shows that there exist roundings into

any real screen.

Proposition 2 Let f be a rounding into S, and z € IR.

Then
(P1) [ maps IR onto S,
(P2)  f(f(x)) = f(2),
(P3)  [f(x) € {w(x), Alx)},
(P4)  if y is between & and f(x), then [(y) = f(x),
(P5)  |f(2) - 2| < hz).

Proof: These properties are easy consequences of (A1) and

(A2). O

Theorem 1 Let S be a real screen. Then a map f: IR — S
is a rounding into S if and only if in every basic interval [a, ]
of S there exists a number d such that [(d) € {V(d), A(d)},

and for every v € IR,

(a) ifa<x<dihen f(r) =g,

(b) ifd<ax<bthen f(x)=0b.

This is just a restatement of Theorem 1.28, p. 33 of [4], so
we do not give a proof.
We shall call d the dividing point of the interval [a, ]

under f.

Definition 2 Let [ be a rounding into S, and = € IR. We
shall denote the dividing point of [7(x), A(x)] under f by
d(z). U h{x) > 0, let

L d@) = (v(x) + A))/2
ple) = h(x)/2 '

and

7(x) = {+]’ il f(d(x)) = Ala);
TE A () = V()

For short, we shall call p(r) and 7(z) the parameters of f on

the interval [(x), A(z))].

Clearly, —1 < p() < I. Because of (Al), p(z) = £l

implies 7(x) = p(x). It is casy to show that

L+ |p(x)]

(r)—al < =P h(a), 1

an imiprovement upon (I’5).

According to Theorem 1, f is completely determined by
S and by the values of its parameters on all the basic intervals

of S.

Theorem 2 Lel [ be a rounding into S, and x ¢ S. Then

J(z)
= y(x) + round (T(:r) (-%)Lr—) — ﬁ(—;—))) T(x)h(x)
= A() + round (T(:l') (';h(?% - !‘%)) T(x)h(x).

If, furthermore, 7(x)/h(x) is an integer, then

J(x) =ronnd (T(:I’) (—[’TI—'—) - B-(—z'—))) r(x)h(x).

Proof: 'These lormulas are straightforward consequences of

Delinition 2 and the propertics of round(x). O
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Definition 3 A rounding will be called uniform if there ex-
ist constants p, 7 such that p(z) = p and 7(z) = 7 for all
z ¢ S. We shall denote such a rounding by U, ().

A rounding will be called semi-uniform if 0 € S and
there exist constants p, 7 such that p(z) = psgn(z) and
7(z) = 7sgn() for all z ¢ S. We shall denote such a round-
ing by S,-(x).

Example 1 (z) = Uj (z) and A(z) = U_y_4(2). Sia
is usually called chopping or truncation. The name rounding
is often reserved for roundings with p(x) = 0. In the IEEE
Floating-Point Standard [2], U, is called rounding toward
—o00, U_y,_y rounding toward +00, and S,y rounding toward
0. The fourth rounding defined in the Standard, rounding
to nearest, has p(z) = 0 but 7(z) alternates on successive
basic intervals since the last digit kept is always even; this
definition assumes standard radix system representation of
S.

In {4], Uy, is called downwardly directed rounding and

U_,y,_1 upwardly directed rounding.

Theorem 3 Let Sy, Sy be two real screens, and f a rounding
into Sy. For each basic interval J of Sy, let w5 :J — 1 be a
linear function which maps J onto some basic interval I of
Sy. Define

(I) ._ {":7 !fT € Sz,'

I = Vo5 (fipala)), ifx ¢S andz € J.

Then g is a rounding into S,, and the parameters of g on J
agree with those of f on I if ¢, is increasing, and differ in

sign only if py is decreasing.

Proof: Let I = [a,b], J = [c,d], and ¢ < = < d. Then
wy(x) ¢ S1, and by Theorem 2,

pi(@)—a p
“b—a —2—)) 7(b—a),

where p and 7 are the parameters of f on /.

f{es(x)) = a+ round (‘r (

Let @ (x) = Axr + B. Then ;' (y) = (v — B)/A. ¢y

is increasing then a = Ac + B and b = Ad + B, so that

#57' (f(ps(x))) = ¢ + round (r ((Ti : Z - g)) (d - c).
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By Theorem 2, this agrees with the rounding into S; which
has parameters p and 7 on J.
If p; is decreasing then ¢ = Ad+ B and b= Ac+ B, so

that

©5' (f(a(2)))
= d + round ((-T) ((’l%d - (;2”1)) (=7)(d—¢c).

¢
By Theorem 2, this agrees with the rounding into S; with
paraimneters —p and —7 on J. O

Example 2 Let 8,s € Z and 8 > 2. The set
S(B,<) i= (kB k € Z)

is the fired-point screen. 4 is equidistant, and S(3,0) = ZZ.

If f is a roundiug into Z, then

folx) = f(zB*)B~°

is a rounding into S(A,s). Il f is uniform or semi-uniform,
then f, is too, and has the same parameters. This can be
proved by means of Theorem 3.

Example 3 Let ;s € 7 and 2> 2, > 1. The set
P(B,t) = {kp; ke € 72, B < |k < '} U {0}

is the floating-point screen. Il f is a rounding into 7, then

0,
J(xpmyB=,

where n is the unique integer satislying

ifx =0
otherwise,

sty = {

B < elg™ < B,

is a rounding into P(A,1). II' [ is uniform or semi-uniform,
then [, is too, and has the same parameters. This again can
be proved by means of Theorem 3.

It is well known that the rounding error of a sum of
two floating-point numbers is itself a floating-point number
when p = 0 (cl. [3], Section 1.2.2, Theorem B3, p. 220). This
fact is uscful for construction of floating-point algorithms
(cf. [4], Section 6.10, p. 192 I.). Therefore it is of interest to

generalize this resull to other roundings.



Theorem 4 Let f be a rounding into the floating-point
screen P(B,t). Then f(a +b) — (a +b) € P(B,t) for all
a,b € P(B,1), if and only if either |p(z)| < 1-2(8~'=-B7'Y),
or [p(e)] = 1 - 2" — A1) and sgn(z) =isga p(a), for
all z ¢ P(B3,1).

Proof: Denote ¢ := 8~! — 3~1-t. We shall only prove suffi-
ciency of |p| < 1 — 2¢ for representability of error.

Assume that a and b are nonnegative, but consider both
addition and subtraction. Also assume that a > b. As long
as a + b has no more than 2t digits the error will clearly
be representable. For a + b to have more than 2t digits,
the mantissas of @ and b have to be separated by at least
one position, so that they together occupy at least 2¢ + |
positions. Wlg. assume that a is in the range 81, BY).
Then, even if all of its digits are maximal, b cannot exceed
(B-1)Ti, % = p71— 7', so that 0 < b < c. We claim
that in this case f(a + b) = a. Then the error is —b, which
is a floating-point number.

The entire interval (a + L;I-, a+ "‘;—l) rounds into a, so it
suffices to show that both b and —b lie between Lgl and ‘-’;—l
From |p| < 1 — 2c it follows that el < —cand ¢ < 24l 50
L;l < —band b < D;—l It also follows that |p| < 1, hence
ﬂg—' <0< L;l, hence %‘ < band —b < L‘;l proving the
claim. O
Example 4 Let 8 = 10, t = 4, a = 1000 and b = 0.09999.
Then ¢ = 10~ — 10~ = 0.09999. If 281 < c then f(a+b) =
1001, and the error 0.90001 is not representable. If 11';—1 >c

then f(a+ b) = 1000, and the error 0.09999 is representable.

3 Representation with contiguous
digit sets

Definition 4 A representation system for reals is a pair

(R,v) where R is a set and v a bijection from R into IR.

This simple definition requires that representation be
complete nad nonambiguous. To construct useful represen-
tation systems, we use inleger radix systems with special
properties. We study these systems in the main part of this
section, and return to representation systems at the end of
the section.

An integer radiz system S(B,D) is given by base 3 and
digit sel D where B is an inleger, |#] 2 2, and D is a finite

sel of integers containing 0. Let

forne 7,

R = [[{0) x IID,

k>n k<n

and

Thus R is the set of all two way sequences of digits in which
all positions from some place on (in direction of increasing
subscripts) contaiu zeros.

Define the valualion function v: R — IR by setling

o(r) == Y. i3
k<n
where r = ... 00/ n_1Tn_z2... € Ry and 7 € D for k < n.
The number v(r) is the valuc of v, and r is a representation
of v(r). A representalion r is nonzero if r, # 0 for some
n € 7. Let
F, = R[) HI) x H{O} , forn €7,
k2n k<n

and

r

U F..

ne%

Fy is the set of inlegral representations, and I the set of
[finile representations.

A number is representable in S if it belongs to v(R),
and ambiguous in S if it has more than one representation
in S. The system S is complete over R if v(R) = IR, and

unambiguous if v is one-lo-one.
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In [5], a digit set D is called basic for 3 if every integer
has a unique integral representation in S(3,D). If 3 > 0,
d > 0 for all d € D and every nonnegative integer has a
unique integral representation in S(3, D) then D is positive
semi-basic for p. Analogously, we shall call D negative semi-
basic for B if —D is positive semi-basic for 3. The following
theorem sunmarizes soine results about basic and semi-basic

digit sets:
Theorem 5 ([5], [6])

1. If D is basic for 8 then S(B, D) is complete over R.

2. If D is basic for 8 then D is a complete residue system
mod |3}

3. If D consists of |3] contiguous integers which include 0,

and either D contains positive and negative values, or

B is negative, or both, then D is basic for 3.

4. There are, however, many noncontiguous basic digit
sets. In fact, if || > 3 then there are infinitely many ba-
sic digit sets for (3; for instance, the sets {—1,0,3" — 2}

are basic for =3, for all positive integers n.

. Let 3 > 0. Then the set Dg:= {0,1,...,8 — 1} is the

&

only positive semi-basic digit set for 3.

In view of our definitions, the standard integer radix sys-
tems with base 7 > 0 and digit set Dg enhanced with a sign
can be seen as consisting of the two systems with semi-basic
digit sets for 3, namely S(f3, D) and S(j3, —Dg).

Let S(3, D) be an integer radix system. Define

dmax = max D

dmin = min D
o dumax, HBE>0
H douiny i BE <0
e i din, if fE>0
T L dmae %<0

m = minv(R_y)

M = maxv(R_;).

Then one can see easily that

i
m = ﬂ — 1
(Imax
M = ——
pg—1

when g > 0, and

/i‘lmax + dmj n

m = /fl 1
9 /hlmin + (Imax
M o=

when 3 < 0. In both cases,

M—m= nax yvin

I8l -1
Ior r € R, let the mappings S, T, T, : R = R, forn € 7Z,

be defined by

n
5
I

rior (left shift)

. ri, i[72>0
T(r) = {0
S™TS™™  (Lruncation after n—th digit) .

. (truncation)
olherwise

~
2
—_
—

It

Then obviously

v(S(r)) = pu(r) 2)
1, =T
Toly = Twax(mn}

Let g denote the smallest gap in the sel ol integers
which have integral representations in S(3, D); that is,

g = min{jv(s) — v(r)|; 3,7 integral}.

Proposition 3 In any inlcger radix system S(3, D), the fol-
lowing conditions ave equivalent:
1. Forallr,s € R, if v(T(r)) < v(T(s)) then v(r) < v(s).
2. Forallv,s € R, if v(r) < v(s) then v(T(r)) < v(T(s)).
3. For all ;s € R, if n = max{k;ri # sx} and r 8" <
suB™ then v(r) < v(s).
4. Forall r,s € R, if n = max{k;ry # s} and v(r) <

v(s) then r,p* < s,0".



5. dm.sx _dmin Sg(lﬂl - l)'

Sketch of proof: It is rather straightforward to prove the
equivalence of 1, 3 and 5. Notice that 2 and 4 are just the
contrapositives of 1 and 3, respectively. O

By Theorem 5, every contiguous digit set with |3| digits
is basic or semi-basic for 8. Then dpax — dmin = 0] — 1,
doax < 18] — 1, and dygin > 1 — |b]; hence M —m = 1,0 <
M <1 and -1 <m <0. Also, g = 1, and so condition 5 of
Proposition 3 is fulfilled. Therefore the other four conditions
are fulfilled, too. Conversely, one can see easily that a system
8(B, D) with |D} > |Bl, ¢ = 1, and which satisfies any one of
the monotonicity conditions of Proposition 3, has contiguous

digits.

Definition 5 A representation r € R is marimal if there
exists an n € 7Z such that r = ... rporapiftnting ... A
representation 7 € R is minimal il there exists an n € 7Z
such that r = ...r 4 2rn1¥n¥y_y .. .. A representationr € R
is extremal if it is either maximal or minimal. The set of
extremal representations will be denoted by E. The sets of
maximal and minimal nonzero representations will be de-

noted by Ep and E,,, respectively.

The left shift mapping S preserves extremal representa-
tions; if B > 0 then it preserves both maximal and minimal
representations, and if # < 0 it swaps them. The set of

values of extremal representations can be written as
v(E)={(k+ M)F"; kyn € Z} = {(k+m)p"; k,n € 7} .

Define

min{n; v "-Mecl}, ifrekE;
depth(r) := { +oo{ (r)8 } otherwice.

Proposition 4 In a system with |B| contiguous digits, a real
number is ambiguous if and only if it belongs to v(E)\{0},
and every ambiguous number has ezxactly two distinct repre-

sentations, one of which is marimal and the other minimal.

Sketch of proof: If we have two distinct representations
of the same value, we can shift them if necessary so that
the first position where they differ is 0. Then the values of
the integral parts difler by at least 1, and so do the values
of the fractional parts. But this is only possible if their
values are M and n, respectively. It follows that the two
represenfations are extremal. O

Now we return to representation systems. To obtain a
representalion system from a system S(j3, D), we have to
enforce completeness and nonambiguity. If D is basic then
S§(A, D) is complete, and il Turthermore the digits are con-
tignous we can achieve nonambiguity, according to Propo-
sition 4, by removiog all maximal or all miunimal nonzero
representations. This gives us the basic representation sys-
tems.

If 1) is semi-basic then we can achieve completeness by
introducing the sign, that is, by taking the union of represen-
tations yielded by the two systems S(3, D) and S(8,-D).
To achieve novambiguity, we remove maximal nonzero repre-
sentations from the system with positive semi-basic digit set,
and minimal nouzero representations from the system with
negative semi-basic digit sct. This gives us the standard
representation system with integer base g > 2 and digits

0,1,...,4—1.

Definition 6 lct S(8, D) be an integer radix system with
basic or semi-basic contiguous digit set D. 1f D is basic
the representation systetus ( R\ Eps,v) and (R\F,,,v) will be
called basic representation systems and will be denoted by
Si,“(l)) and 85" (D), respectively. If D is positive semi-basic
the representation system ((/\Ep)U(R™\ E), vUv~) where
R~, E_, v~ refer to the system S(8, — D), will be called the

standard representation syslem, and will be denoted by S5
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4 Truncation and locality

In representation systems the evaluation function v is invert-
ible. If f maps R into Fy, then vfv™' maps IR into v(Fy,).
We shall call vfv~! the map induced by f. Of special interest
are the maps induced by truncations after the n-th digit, Tn.
In basic and standard representation systems, the set v(F,)
is equal to the fixed-point screen S(8, —n), so we can ask:

When is the induced map a rounding?

Proposition 5 Lel S be a basic representation sysiem.
Then v(R_y) = I, where

I:= {[m,M), it 5 = S4(D)
(m, M}, ifS=355'(D)

Proof: Let x € I. Recursively define the sequences (74);Zg

and (di);Zg by

and, for £ < —1,
. o k
dk — I.‘rk+]ﬂ - T”‘Jv if s = S/Jgnﬂ (“D)
[epf— M, if S =83 (D)

T = ;l‘k+1/3 - dk .
One can prove by induction on k that d; € D, 4 € I, and
apf* +Z§=0 d;} =x,for k=0,-1,.... From this it follows
that ...00d_,d_5... is a representation of x in the system
Sg(D), with ¢ = +1 when [ = |m, M) and ¢ = —1 when

I=(mM].O
Theorem 6 Let o € {—1,+1}. In S}(D),
vTv ™ (z) = Uzp-1,0(2),

and in S}

vTv™(z) = S11(x).

Proof: From Proposition 5 it follows that in the systems
85(D), every real number z has a unique pariition in the
form

r=k+z (3)

where k € Z and z € v(R_,). If r is a representation of z
in S§(D), then & = v(T'(r)) + v{s) where v(T(r)) € Z and

s € R_;. Therelore, by uniqueness of (3),
vTv~ Y (z) = v(T(r)) = k.

It follows that vTv=! maps the entire interval k + [m, M),
when o = +1 (the entire interval k+ (m, M}, when 0 = —1)
into k. Hence vTv™! is a rounding into the screen 7 with
parameters p = 2M — 1 and o (unless M = 0 and 0 = +1,
or M =1 and 0 = —1). Since D is basic, 0 < M < 1, hence
vTv~! is always a rounding.

In8;, M=1and o=+t forz >0, while M = -1 and

= —1 for z < 0, so that in this case vT'v="(x) = Sy, (x).
m]

This can be easily generalized to mappings induced by
truncation after n-th digit, by using Theorem 3.

In floating-point. atithmetic it is important to know how
many digits after the truncation point aflect the result of
rounding. Bven if this number is not finite it may still be
the case that very little information is required about the
removed digits. We formalize these considerations by intro-

ducing locality of roundings.

Definition 7 Let S be a basic or a standard representa-
tion system, and [ a rounding into the screen 7ZZ. Denote
{, = vl,v7'. We shall call f local in S if there exists an
integer n such that f(r) = [(La(x)), and quasi-local i f(x)
additionally depends on the value of depth(v='(ie)). 1f f is

either local or quasi-local, let loc(f) denote minimum n such

that
t_n(x) =1_a{y) A depth(v™H(z)) = depth(v™(y))
= [(r) = f(y).

Theorem 7 In S3(D), the rounding U, , is local, the round-

ing U, _, 1s quasi-local, and

toc(U,) = loc(l,_s) = depth(v™" (p_—:_l)) .
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In S}, the rounding S, is local, the rounding S,,_, ts quast-

local, and
loc(S,,1) = loc(S,,_1) = depth(v™! (_p;—_l)) .

Sketch of proof: Let f := U,,. Denote ¢ := £, and
6 := depth(v1(¢)). Assume that § is finite.

Let z € R, r := v™z), k := v(T(r)), and z := = — k.
Then k € Z and —1 < 2 < 1, s0 that f(z) € {k—1,k, k+1}.
The exact value of f(z) depends on the relation between z
and k + ¢, when z > 0, and between x and k — 1 + (, when
z < 0. This means that we have to compare z either with { or
with ¢ — 1. Observe that depth(v='(y)) = depth(v='(y 1)),
for every y € R.

Case 1: 0 = +1. If 2z and ( differ in their first § digits
then knowledge of ¢_s(z) suffices to determine the relation-
ship between them. Otherwise, as v=1(¢) is minimal, z > (.
This suffices when 7 = +1. If we additionally know the
depth of v~1(x) then we can also determine whether z = ¢
or z > (, which is necessary when 7 = —1.

Case 2: ¢ = —1. If z and ¢ differ in their first § digits
then knowledge of t_s(z) suffices to determine the relation-
ship between them. Otherwise, as v=!(¢) is maximal, z < (.
This suffices when 7 = —1. Il we additionally know the
depth of v~!(x) then we can also determine whether z = (
or z < (, which is necessary when 7 = +1.

It is not difficult to construct examples which show that
locality of U, , is at least 6.

The proof of the second part of the theorem concerning
standard systems is analogous. O

Again, the notion of locality and the results concerning

it can be extended to other screens using Theorem 3.

Example 5 In 8§§({-1,0,1}), we have

0

Il

loc(Uo,r)

loc(Uze_y,r) = 1, force {1/6,5/6}

When 7 = o, the roundings are local, otherwise quasi-local.

In S}, we have

loc(S1) = loc(S_y,1) =0

loc(Sye-1,,) = 1, force {1/10,2/10...,9/10}

The roundings are local if 7 = +1, quasi-local if 7 = —1.
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