Rounding Algorithms for IEEE Multipliers

Mark R. Santoro

Gary Bewick

Mark A. Horowitz

Stanford University
Stanford, CA 94305

Abstract

Several technology independent rounding algorithms for
multiplying normalized numbers are presented. The
first is a simple rounding algorithm suitable for software
simulation or moderate performance hardware multipli-
ers. The next two algorithms are parallel addition
schemes suitable for high performance VLSI multipliers.
The latter algorithm eliminates the carry produced by
the lower order bits from the critical path. Several
methods for computing the sticky bit are are also pre-
sented. Included is a new fast and efficient technique for
computing the sticky bit directly from the carry save form
without undergoing the expense of a carry propagate
addition.

1. Introduction

Many applications exist in which IEEE floating-point
multiplication is not required. However, to be widely
accepted, current and future floating-point coprocessors
must adhere to IEEE standard 754 for binary floating-
point arithmetic [4]. The standard can be implemented
in software, hardware, or a combination of the two [2].
The performance of modern digital systems demands
direct hardwareimplementations of floating-point multi-
pliers. To match the performance of the hardware multi-
pliers, the rounding modes must also be implemented in
hardware.

Three algorithms will be presented for implementing
round to nearest/up. It will then be shown how the round
to nearest/up result can be adjusted to produce the
correct IEEE rounded result. Finally, three methods will
be presented for computing the sticky bit. All of the
rounding algorithms and sticky methods presented are
technology independent and can be used with several
types of multiplier architectures.

176

2. Round to Nearest

The IEEE standard 754 default rounding mode is round
to nearest. The standard states that “in this mode the
representable value nearest to the infinitely precise
result shall be delivered; if the two nearest representable
values are equally near, the one with its least significant
bit zero shall be delivered. ” Round to nearest as defined
in IEEE 754 is actually round to nearest/even. This
means always round to nearest, and in the case of a tie
round to even.

A conventional rounding system , round to nearest/up,
adds 1/2 to the least significant bit (I.SB) of the desired
result and then truncates by removing the bits to the
right of the LSB. Round to nearest/up produces exactly
the same result as round to nearest/even in all cases
except when a tie occurs. If the even result were the
smaller value, round to nearest/up would incorrectly
round up. Dealing with the tie case before rounding
makes round to nearest/even more complex and slower
than round to nearest/up. For this reason, the rounding
algorithms developed in this paper will produce a round
to nearest/up result. Atthe end ofthe paper the so-called
“sticky” bit, which identifies the tie case, willbe introduced.
It will then be shown how the correct round to nearest/
evenresult (IEEE round to nearest) can be obtained from
the round to nearest/up result by simply forcing the LSB
to a 0 in the case of a tie.

3. Simple Round to Nearest/up Algorithm

Most high performance VLSI multipliers use some sort of
array or tree structure to sum the partial products in the
mantissa portion of a floating-point multiply [7]. Figure
1shows a flow diagram for the mantissa handling section
of a floating-point multiply unit. This simple round to
nearest/up scheme will be referred to as Algorithm 1.

n bit binary number n bit binary number

III. X III.

Array, tree, or iterative structure

Multiply
2n bit product in carry save form
A
~ ™
[*18] , BT[] JeJe[e] carry bits
+
CPAdd o8] [elele] ¢[e[é] Sum bits
OWMWOWHIW
n bits n bits
/—M\ s N
19}, [e[® 000 9 [0 _TeeE 19
+ . 7
Round [0101, BRI 0.0 Ti01-2"™" o, por oo Tor =2
Overflow No Overflow
(1%, (18] ___Te[e[9)]
Normal \
— Right shift 1 blt
and ncrement o [e[o] __ Te[e[e]
exponent ~— ——

n bit round to
nearest/up result

Figure 1. Algorithm 1 Data Flow

The top section (Multiply) accepts two normalized
mantissas and uses some type of reduction structure
which produces the product in carry save form (two 2n bit
numbers). These two numbers are then added in the
CPAdd section to produce a complete 2n bit product.
There are two possible rounding operations which then
occur, depending on the most significant bit (MSB) of this
product. If the resulting product is in the range 2 <
product < 4 (overflow), the constant 2+ is added to the
product and the result is truncated to n-2 bits to the right
of the decimal point. A normalization shift (Normal) of
1 to the right is then necessary to restore the rounded
product to the range 1 < rounded product < 2, with an
appropriate adjustment of the exponent. If the original
2n bit product was in the range 1 < product < 2 (no
overflow), then the constant 2t is added. In most cases
this rounded product will be less than 2 and the rounding
operation is finished. However, it is possible that the
addition of 2™ could cause the rounded product to be
equal to 2, in which case a normalization shift of 1 and an
exponent adjustment is necessary (as in the left branch).

The low order n-2 bits from the CPAdd section of Figure
1 are not used in any of the following steps. The only
effect that these bits have on the final result is due to the
carry they generate into the most significant n+2 bits.

177

Thus, the carry propagate adder need never actually
compute the sum of the least significant n-2 bits. The 2n
bit carry propagate adder can be replaced by an n+2 bit
carry propagate adder, with an input carry, and some
auxiliary hardware which computes the carry from the
least significant n-2 bits. The smaller adder is clearly an
advantage where a hardware implementation is con-
cerned.

Algorithm 1 requires two carry propagate additions in
series. Algorithm 2 concentrates on computing these
additions in parallel, which significantly increases per-
formance. Finally, Algorithm 3 moves the carry from the
least significant bits out of the critical path.

4. Parallel Addition Schemes

If an n+2 bit carry propagate adder is used in the CPAdd
section of Figure 1, then the carry from the lower bits
(Cin) will be added at the 2¢» bit position. Assuming that
no overflow occurred, an additional 2« will be added to
the result in the Round section. The 2 bit position will
thus be called the round bit position or R bit. The 1 that
always gets added to the R bit position for rounding will
beidentified as Rin. Ifnooverflow occurs, adding Cinand
Rin to the R bit position will produce the correct round to
nearest/up resulit.

Now consider the overflow case. The MSB, known as the
overflow bit (V), is a 1. By assuming that no overflow
would occur, 2-» was added for rounding. If an overflow
did occur, then 2=+ should have been added for rounding.
The difference of 2c» must be added to correct the round-
ing. This can be done by defining a new bit that is added
to the 2¢» bit position in the case of an overflow. This bit
will be called the overflow rounding bit (Rv). The correct
rounding can thusbe obtained by simply adding the carry
from the lower order bits (Cin), the rounding bit (Rin),
and the overflow rounding bit (Rv), to the R bit position.
These bits are shown in Figure 2.

@|Rv

@ | Rin

@|Cin
Carry |10|0|©® e o o (000O
Ssum |@ @®|® ® 00 e
v n-1 bits LIR

Figure 2. Bits to be Summed for Correct Round
to Nearest/up

Fast and effective implementations for summing the bits
in Figure 2 must overcome two problems. First, the value
of Rv is not known until the sum of all of the other bits
have been computed. Second, an adder with 5 input slots
at the LSB is required.

The first problem can be overcome by computing two
carry propagate additions in parallel. The first, assum-
ing Rv=0, and the second, assuming Rv=1. When the
overflow condition is known, the correct sum can then be
selected using-a multiplexor. These two additions are
related, as the first is simply one larger than the second.
This provides many possibilities for the designer. An
efficient technique is to simply merge the two carry
propagate adders into one. A conditional sum adder
(CSAdad), or carry select adder as it is often known,
computes two possible outputs [5]. The first assumes the
input carryis a0, and the second assumes the input carry
isa 1. When the input carry is known the correct output
is picked. This compound adder requires much less
hardware than two separate adders since only the carry
chain need be duplicated. In the more general sense a
conditional sum type adder produces two results in the
form A+B and A+B+1. Asignal, not necessarily the carry,
is then used to select the desired output.

Now for the second problem. Rcarry and Rsum use the
carry and sum slots. Rv uses the input carry slot to the
CSAdder. This leaves no empty slots for Rin and Cin to
be added to the R bit position. Two algorithms will be
proposed to fix this problem. Both involve adding Cin
and Rin to the R bit position without propagating the
carry before computing the carry propagate result.

The data flow of Algorithm 2A is shown in Figure 3. Arow
of half adders is used to partly sum the carry and sum
bits.! Thisleaves a hole in the carry propagate increment
adder at Rcarry. The Cin from the lower order bits can be
placed into this hole. Rin must still be added to the R bit
position. An additional row of half adders could be used
as on Cin but there are more economical techniques.
Array multipliers typically have empty slots. A 1 can
often be injected into the array, or corresponding struc-
ture,in the appropriate place such that the effect is to add
Rin to the R bit. An iterative multiplier could also have
Rin injected into the accumulator. Once Rin and Cin
have been added to the R bit position and the CSAdd has
completed, the corrected result can be picked based upon
the overflow bit from the A+B result. The V bit from the

!Since developing algorithm 2A it has been learned that half
adders have been used in some commercial parts including the
Weitek WTL 1164 [9], and the Intel i860 (N10) [3].

178

A+B result is used, because the overflow bit must be
checked before Rv has been added in. The A+B+1 result
has already added Rv to the sum, potentially corrupting
the Vbit. Ifthe V bit from the A+B resultis a 0, the A+B
result is chosen. If the V bit is a 1 the A+B+1 result is
picked. In this case, since an overflow has occurred, the
result must be normalized and the exponent adjusted.

@ Rin

Array, tree, or lterative structure

i

v n-1 bits L (R
Cany (@0 |® c o LIL I 2L J
Sum |10 @@ o000
row of n+2 half adders
00 . o o ®/0e ~eocn

® 0e o e o

V from

n+2 bit CSAdder sel @ A:B

result

1

Figure 3. Algorithm 2A Data Flow

In some cases a slot may not exist, or it may be difficult
to inject Rin into the multiplier array or accumulator.
Figure 4 shows the data flow for Algorithm 2B. This
algorithm is similar to Algorithm 2A except that Rin is
not injected into the array. Instead, the two least signifi-
cant half adders are replaced with carry save adders,
providing two additional slots at the L and R bit posi-
tions.? Rin, which is always a 1, can be combined with Cin
and placed into these empty slots. If Cin equals 0, then
a 1 from Rin should be added to the R bit. If Cin equals
1, then 2 should be added to the R bit position; one from
Rin and one from Cin. Adding a 2 to the R bit position is
equivalent to adding a 1 to the R+1 (L) bit position. The
output of the half adder/CSA row may then be fed to the
CSAdder as in Algorithm 2A.

*For simplicity, an entire row of CSA cells could be used, with the
unused inputs set to 0.

v n-1 bits L|R
Carry |©|0|O® . o o (I AL AL
Sum |@(O|® (JEJAL AL
@ Cin
/
clc
row of n haif adders s|s
A|A
‘ V from
n+2 bit CSAdder sel @ A«B

V

Figure 4. Algorithm 2B Data Flow

In the case of a conventional array, the carry from the
lower order bits (Cin) may be determined soon after the
carry save bits, so waiting for Cin before doing the halfor
full additions may not be a problem. Other multipliers
may require additional time to determine the carry from
thelower order bits. Asan example,iterating multipliers
may require one or more additional cycles to determine
Cin [6]. The next section develops a rounding algorithm
which eliminates Cin from the critical path.

5. Removing Cin From the Critical Path

Referring back to Figure 2, five bits must be added at the
R bit position. They are Rv, Rin, Cin, Rcarry, and Rsum.
Since Rinis always a 1 the sum of these five bits canrange
from 1to 5. The resulting carry from the R bit to the L bit
will be equal to 0, 1, or 2. Since the CSAdder can only
propagate a carry of 0 or 1 in parallel the situation may
appear hopeless, but this is not the case.

Knowing that Rin is always a 1 narrowed the range of
possible sums from 0-5 to 1-5. It is possible to further
narrow the range of possible sums, and thus narrow the
range of possible carries, by summing some of the bits
before the others are known. Rv is not known until the
carry propagate addition is completed and the V bit is
examined. It was also stated that the goal of this section
was to start the carry propagate additions before Cin is
known. Rcarry and Rsum are both known before Rv and
Cin. In fact, they are known at the same time or before
all of the other carry/save bits, and the carry propagate
additions cannot be started until these bits are known.
By looking at Rin, Rearry, and Rsum, the possible sum,
and possible resulting carries, of the 5 bits at the R bit
position can be further narrowed as shown in Table 1.
For example: if Rearry = 1, and Rsum = 0 then, the sum
of Rsum, Rcarry, Rin, Rv, and Cin must be in the range
2-4. The possible carry from the R to the L bit will then
be in the set {1,2).

179

X3 5 R to L Carry
1 1-3 {0,1}
2 2-4 {1,2}
3 35 1,2}
Where:

23 = Rsum + Rearry + Rin
25 = Rsum + Rcarry + Rin + Rv + Cin
R to L carry = Possible carry from R to L

Table 1. Carry Propagation From R to L

From Table 1 it can be seen that summing Rin, Rsum,
and Rcarry limits the possible carries into the L bit toone
of two sets: {0,1) or {1,2}. Within each set the carry differs
by exactly 1; therefore, the set of possible rounded results
from the Lbit up can differ by at most 1. Thisisimportant
because the CSAdder computes results in the form A+B
and A+B+1. In addition, since the R bit is not part of the
final correctly rounded result it need not be included in
the carry propagate addition. Knowing the correct carry
set yields one of two possible cases:

Case 1: The carry set is {0,1}

In thiscase either a0 or a 1 must be added
to the L bit position. Since the CSAdder
directly computes resultsin the form A+B
and A+B+1 both possible correct results
are computed. If the actual carryis a0
the A+Bresultisselected, with the A+B+1
result selected if the carry is a 1.

Case 2: The carry set is {1,2}.

In this case either a 1 or a2 mustbe added
to the L bit position. Since a CSAdder
cannot compute A+B+2, a row of half ad-
ders should be used providing a slot to
add 1 to the L bit position. This leaves
either a 0 or a 1 to be added to the L bit
position. This is precisely case 1 and
should be handled as such.

Referring to Table 1 the carry set {0,1) (Case 1) is chosen
only if ¥3 = 1. Since Rin is always 1, a logical OR on
Rcarry and Rsum can be used to differentiate between
Case 1and Case2. Placing the output of this OR gate into
the empty slot created by a row of half adders will
correctly add a 1 to the L bit for Case 2 and a 0 for Case
1 (see Figure 5).

v n-1 bits L|R
Cany 1@ 0@ oo0i0®
— o o
sum @/ 0|@® o o0
Half add on n+1 carry save bits]
(JLJL) LJL)
e e o
(ALJL oo
‘ Result select logic
I n+1 bit CSAdd sel I__ based upon Rin,
Rearry, Rsum, Rv,

‘ Cin.

Figure 5. Algorithm 3 Data Flow

Once both possible results have been computed, the
correct one must be picked. Cin should now be known;
Rv, however, isnot. The V bit from the A+B output is not
automatically the correct value to use for Rv as it wasin
Algorithm 2. The reason is that the other bits may have
already determined that the A+B+1 result should be
chosen regardless of the value of the V bit. To determine
the correct V bit to use for Rv, a preliminary A+B or
A-+B+1 value should be chosen based upon the ¥5 column
of Table 2, assuming that Rv=0. The V bit of the selected
output will be the correct V bit to assign to Rv. The value
of 25 should then be recalculated using the actual Rv,
and the correct A+B or A+B+1 result selected. The
normalization and exponent adjustment is the same asin
Algorithm 2.

z3 5 Rto L Carry Output
1 1 0 A+B
1 2 1 A+B+1 Case 1
1 3 1 A+B+1
2 2 1 A+B
2,3 3 1 A+B
23 | 4 2 A+B+1 Case 2
2,3 5 2 A+B+1
where:

X3 = Rsum + Rearry + Rin

25 = Rsum + Rearry + Rin + Rv + Cin

R to L carry = Possible carry from R to L
Output = The CSAdder output to be selected

Table 2. CSAdder Output Selection

180

6. IEEE Rounding Modes

6.1 Round Toward +, -0, and Zero

In addition to round to nearest, the default rounding
mode, IEEE standard 754 defines three other optional
rounding modes. These “directed” rounding modes are
round toward +ee, round toward --- and round toward
zero. Once round to nearest has been implemented the
other rounding modes are relatively simple. To begin
with, consider round toward zero. This is simply a
truncation. All of the previous algorithms will work
except the Rin and Rv bits will now be 0.

Now lets look at round toward +e. The standard states
that “when rounding toward +c the result shall be the
format’s value (possible +) closest to and no less than
the infinitely precise result.” Basically what this says is
that in the case of a positive result if all the bits to the
right of the LSB of the desired result are 0 then the result
iscorrect. Ifany ofthesebitsarea1,(i.e. R=1or sticky=1)
then a 1 should be added to the LSB of the result. If the
resultis negative it should be truncated. When rounding
toward - the exact opposite holds. The direct rounding
algorithms can be summarized as follows:

Round Toward Zero
Truncate

Round Toward +
if sign = positive
if any bits to the right of the result LSB = 1
Add 1 to result
else
Truncate at LSB
if sign = negative
truncate at LSB

Round Toward -~
if sign = negative
if any bits to the right of the result LSB = 1
Add 1 to result
else
Truncate at LSB
if sign = positive
truncate at L.SB

6.2 Obtaining The IEEE Round to Nearest Result
It was stated earlier that round to nearest/up produces
exactly the same result as round to nearest/even except
when a tie occurs. A tie can only occur when the result is
exactly halfway between two numbers of representable
precision. For example:

37.25XXX Raw number to be rounded

+0.05 Add 0.05 to round to nearest/up
37.30 Sum
37.3 Truncated - Final rounded Result

If the X’s are all zeros then 37.25000 is exactly half way
between 37.2 and 37.3. In this case round to nearest/up
produces a different result than round to nearest/even.
There are only two cases to be considered. Either all of
the X’s are 0, or they are not. The bit which distinguishes
between these cases is referred to as the sticky bit. This
bit is a 0 if all of the X’s are 0, and 1 if any of the X’s are
non-zero.

To produce the correct round to nearest/even result from
the unrounded result, a 1 is potentially added to the
round bit. The bit (E) to be added to the round bit (R) for
correct IEEE round to nearest is based upon the L, R, and
sticky (S) bits as shown in Table 3.

Before Rounding Add to R L After Rounding

L R S E U Le Ly

X 0 0 d 1 X X

X 0 1 d 1 X X

0 1 0 0 1 0 1

1 1 0 1 1 [[

X 1 1 1 1 X X
where:

E = Bit added for correct round to nearest/even.
U = Bit added for correct round to nearest/up.
L, = The L bit after round to nearest/even.

L,= The L bit after round to nearest/up.

d =Don't care. E can not effect L.

Table 3. Round to Nearest/even versus Round to
Nearest/up

In contrast, round to nearest/up assumes that the bit to
be added to the R bit for correct rounding (U) is always a
1. The only case where the round to nearest/up bit (U)
will produce a different result from the round to nearest/
even bit (E) is shown in row 3 of Table 3, where E=0, and
U=1. In this case round to nearest/up changed the L bit
from a 0 (L=0) to a 1 (L,=1), while round to nearest/even
left the L bit unchanged (L,=0). The important thing to
notice is that when round to nearest/up changed the L bit
to a 1, the 1 was not propagated. As such, only the L bit
was effected. This means that the correct round to
nearest/even result can be obtained from the round to
nearest/up result by restoring the L bit to a 0.

181

By assuming that the round bit will be a 1, the round to
nearest/up algorithms have the advantage over the round
to nearest/even methods in that the carry propagate
addition can take place before the sticky bit has been
computed. This means that the round to nearest/up
result can be obtained using any of the methods pre-
sented in this paper. The correct IEEE round to nearest/
even result can then be obtained by observing only the L,
R, and sticky bits, and forcing the L bit to 0 if required.
Care should be taken however, as operations such as
right shifting in the event of an overflow, and adding Rv
and Rin can change the position and/or value of the S, L,
and R bits.

7. Computing the Sticky Bit

7.1 A Simple Method to Compute the Sticky Bit
The first method for determining the sticky bit is concep-
tually the simplest, as it stems from the very definition of
the sticky bit. Recall that the sticky bit was defined tobe
equal to 0 if the value of all of the bits to the right of the
round bit is 0. To determine the sticky bit, begin with a
carry propagate addition on all of the bits. The sticky bit
(S) will be the OR of all of the bits to the right of the R bit.
This method is quite simple in concept, and is often used
in practice. One drawback is that a full carry propagate
addition, followed by a logical OR, must be done on all of
the lower order carry save bits.

7.2 Computing Sticky From the Input Operands
The sticky bit may also be computed directly from the
inputs to be multiplied, bypassing the multiply array
completely. The number of trailing zeros in the binary
number X*Y is exactly equal to the number of trailing
zeros in X plus the number of trailing zeros in Y.* The
trailing zeros in X and Y can be counted and summed
while the multiply is taking place. If the sum is greater
than the sum of bits to the right of the round bit, then the
sticky bit is a 0. The advantage of using this method is
that the sticky bit can be computed in parallel with the
actual multiplication, removing the sticky bit from the
critical path.

3The number of trailing zeros in the product is exactly equal to
the sum of the trailing zeros in the operands for any representa-
tion in which the base is prime. This is true because prime
numbers cannot be factored. Non-prime bases can be factored;
therefore, the number of trailing zeros in the product can be
greater than the sum of the trailing zeros in the operands. As'an
example, in base 10 if the least significant non-zero bits in the
operands were 2 and 5 respectively an additional zero would be
created, and the number of trailing zeros in the product is larger
than the sum of the trailing zeros in the operands.

7.3 Computing Sticky From the Carry Save Bits
The third method depends upon all of the partial prod-
ucts being positive (i.e. no Booth encoding has been used)
[1]. Given this assumption, a simplelogical OR on the
carry-save form of thebits to theright of theround
bit will yield the correct sticky bit.

This simple ORing of the carry save bits works for the
following reason. Ifthe 2nbit carry saveresultisscanned
from right to left, the first non-zero carry/sum pair will
containasingle’l. Thatis, either the carry or the sum will
be a 1 but not both. This single one could not generate a
carry during a carry propagate addition, and since all of
thebits toits right are zero, thereisno carry to propagate.
This will cause the single 1 to remain in its current
position. If this position is to the right of the R bit, the
sticky bit will be a 1.

To see why this is true, refer to Figure 6. This figure
shows a section of the partial products for the multiplica-
tion of A * B. Each row represents a single partial
product which will be generated and later summed to
form the carry save form of the final product. A0BO
represents the partial product represented by the logical
AND of bit A0 with bit B0, and so on.

5 4 3 2 1 0
0 | ASBO A4BO A3BO A2BO A1BO AOBO
1| A4B1 A3Bt A2B1 A1B1 AOB1
2 | A3B2 A2B2 A1B2 AO0OB2
3 | A2B3 A1B3 A0B3
4 | AiB4 AOB4
5 | A0OB5
Figure 6. Summation of Partial Products

Assume A2B2 in column 4 is a 1, and column 4 is the first
column in which a 1 appears. Since A2is a 1, B1 and BO
must both be 0, or there would be a 1in an earlier column
formed by A2B1 in column 3 row 1, or A2B0 in column 2
row 0. All products above A2B2 in column 4 contain
either a B1 or a B0, and therefore must be 0. Looking
across row 2, B2isa 1. This means Al and AQ must both
be zero or a 1 would exist in columns 3 or 2. All products
below A2B2 in column 4 contain either Al or A0 and thus
also must be 0. Therefore A2B2 is the only non-zero
partial product in this column. This can easily be gener-
alized to any element in any column, proving that the
first column in which a 1 exist will contain a single 1.

182

8. Conclusions

Several technology independent rounding algorithms
suitable for hardware implementations have been pre-
sented. Algorithm 1, shown in Figure 1, is a straightfor-
ward round to nearest/up algorithm. It demonstratesthe
basic principles of rounding and is suitable for software
simulation, or moderate performance hardware implem-
entation. Algorithms 2 and 3 are better suited for high
performance VLSI multipliers. While Algorithm 1 re-
quires two series carry propagate additions Algorithms 2
and 3 use a parallel carry propagate addition scheme.
Algorithm 2A (Figure 3) would be a likely choice for most
conventional array or full tree multipliers. Algorithm 2B
(Figure 4) would be preferable if a blank slot does not
exist in the array for summing in the rounding bit (Rin).
Though slightly more complex than the other methods
Algorithm 3 (Figure 5) is best suited for iterative multi-
pliers, or any multiplier where the carry from the lower
order bits is in the critical path. By using the sticky bit,
any of the round to nearest/up results can be corrected to
comply with IEEE standard 754 rounding. Finally, three
methods for determining the sticky bit were presented.
The first method originates directly from the definition of
the sticky bit. The second method allows the sticky bit to
be determined from the input operands in parallel with
the actual multiplication. The third method represents
a new fast and efficient technique for determining the
sticky bit from the carry save bits.

Acknowledgements

The research for this paper was partially supported by
the Defense Advanced Project Research Agency (DARPA)
under contract N00014-87-K-0828, and by the Center for
Integrated Systems (CIS) at Stanford, using facilities
provided under NASA contract NAGW 419.

References

1 A.D. Booth, “A Signed Binary Multiplication Technique”,

Qt. J. Mech. Appl. Math., Vol. 4, Part 2, 1951.
[2] dJ. J. Coonen, “An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic”, Computer Maga-
zine vol 13, no 1, January 1980.
{3] L. Kohn, S. Fu, “A 1,000,000 Transistor Microprocessor”,
IEEE Int. Solid-State Circuits conf., February 1989,
(4] “IEEE Standard for Binary Floating-Point Arithmetic”,
ANSINIEEE Std 764-1985, New York, The Institute of
Electrical and Electronics Engineers, Inc., August 12,
1985.

{6}

(6]

[71

[8]

(9]
[10]

J. Sklansky, “Conditional Sum Addition Logic”, Trans.
IRE, Vol. EC-9, No. 2, June 1960, pp. 226-230.

M. Santoro, and M. Horowitz, “A Pipelined 64X64b Itera-
tive Array Multiplier”, IEEE Int. Solid-State Circuits
conf., pp. 35-36, February 1988.

C. S. Wallace, “A Suggestion for Fast Multipliers”, IEEE
Transactions on Electronic Computers, Vol. EC-13, pp.
14-17, February 1964.

S. Waser, and M. J. Flynn, “Introduction to Arithmetic for
Digital Systems Designers”, New York, CBS Publishing,
1982.

Weitek, private correspondence with engineers at Weitek.
J. M. Yohe, *Roundings in Floating-Point Arithmetic”,

IEEE Transactions on Computers, Vol. C-22 no. 6, pp. 577-
586, June 1973,

183

