Implementing Infinite Precision Arithmetic

Jerry Schwarz
AT&T Bell Labs
Murray Hill, NJ

Abstract

A data structure for exact representation of real num-
bers is presented. The representation allows exact com-
putation involving ordinary arithmetic operations on ra-
tionals, irrationals and even some transcendental values
(such as 7). Functions defined via infinite series may
also be exactly evaluated. Algorithms are described and
analyzed. An implementation in C++ is described.

1 Introduction

There are two common ways for higher level languages
to support numeric computations when hardware rep-
resentations of numbers have inadequate precision. The
“multiple precision” approach (for example in Numerical
Turing[1]) uses a floating point representation with more
bits and implements the operations in software. The
“bignum” approach (for example in LISP[2]) uses dy-
namically allocated storage to represent arbitrarily large
integers. A drawback of the multiple precision approach
is that numbers still have finite precision. The problem
with bignum representations is that, even when extended
to deal with rational combinations of integers, they can-
not represent irrational values, such as v/2. This paper
presents a representation that combines the properties
of floating point and arbitrary precision. A number is
represented partially as a sequence of bits and partially
as an “expression” that represents bits that have not
yet been “expanded”. When a demand for more bits
is generated, the expression will be manipulated until
the demanded bits are determined. Typically, demand
is generated by the need to compare two numbers or to
output a number.

Exact representations of numbers have been described
by Boehm et. al.[3], Boehm[4] and Vuillemin[5]. Of
these, the methods described in this paper are closest
to that of Boehm(3]. They differ primarily in the way
that a demand for bits propagates from an expression to
subexpressions. In Boehm(3] the demand propagated in
fixed patterns. In the methods of this paper the values
of subexpressions are considered in propagating demand.

The representation described in this paper has been used
in a C++ library as described in Schwarz[6]. The repre-
sentation is intended for use in situations where the cost
of exact computation is worth the expense. For example

e When there is some part of a computation in which
high precision is required. In this case, the program
might use exact numbers in some places and floating
point types in others.

When an analyst wants to determine if a program
using ordinary floating point is suffering from a nu-
merical instability.

When an analyst wants to compute some numbers
to high precision, either because of intrinsic interest
or to serve as reference values for methods using
ordinary floating point numbers.

Some basic concepts used in this paper:

real number: The ordinary mathematical notion of
real number. Real numbers are written in italics
thus: z, y, k,....

small value: A real number z is small if it satisfies
—~B < z < B, where B is an arbitrary “base” that
will play a major role in the representations dis-
cussed in this paper.

bigit(rhymes with digit): An integer value b satisfy-
ing —B < b < B. The name comes from “big digit”.
Notice that bigits may be negative. Bigits are writ-
ten in italics thus: a, b,....

primitive expression: A data structure used to repre-
sent small values. Primitive expressions are written
in bold font thus x, y,.... Primitive expressions are
built from bigits and (pointers to) other primitive
expressions, just as an arbitrary expression would
be. However only a limited repertoire of combining
forms is allowed.

exact number: A data structure used to represent ar-
bitrary real values. It consists of an integer expo-
nent and a primitive expression.

Consider a real value x represented in a maximally re-
dundant balanced base B notation.

o
z=B° E b.‘B-i
=0

where the exponent e is an integer, and (b;) is a sequence
of bigits. A real value can be broken down in this way
into many combinations of exponents and smalls. And
a small, in turn, has many different representations as a
sequence of bigits. Redundancy is inherent in the prob-
lem. Any representation in which exact computations
are possible with certain other desirable properties (see
Vuillemin{5]) must exhibit redundancy.

Management of exponents is straightforward, so the cen-
tral concern of this paper is to finds ways of representing
primitive expressions that permit them to be efficiently
manipulated and that control the amount of work re-
quired to expand them into sequences of bigits.

2 Primitive Expressions

It is necessary to clearly distinguish between the primi-
tive expressions and the real values they represent. I use
an applicative style to notate primitive expressions and I
write a bar over the data structure to indicate the value
it represents.

The simplest primitive expression is expanded(d,x),
which contains a bigit and a subexpression.

expanded(b,z) = b+ B!

expanded is so important that there is a special infix
notation for it.

expanded(d, x) b x

Taking an arbitrary primitive expression and finding an
equivalent (representing the same value) expanded ex-
pression is called ezpansion. b is called the integer part
and x the fractional part of b @ x. @ associates to the
right so, a @ b @ x is the same as a ® (b @ x).

The following representations are used, where b and the
multiplier m are bigits, x and y are subexpressions repre-
senting smalls, a carry c is an integer satisfying |c| < B?,

and a shift s is a non-negative integer.

abs(x) = x|
cprod(c,x,y) = c+X¥
expanded(b,x) = b+%XB~!
minus(x) = -F
mult(c,m,x) = c+mX
prod(x,y) = XyB-!
sum(c, x,y) = ¢+X+7
quot(c,x,y) = (c+X)/¥
shift(x, s) = B~°%
Zero = 0

There is no theoretical basis for this choice of primitive
expressions. Many other collections would have served.
They were chosen because they provided a convenient
collection that “fit together” in a way that allows expan-
sion to work. (See section 4.)

In some cases the value represented by a primitive ex-
pression will be a small value for any (small) values of its
operands. This is true for expanded, minus, zero, prod
and abs. In the other cases for certain operands the value
would be too positive or too negative. In what follows
primitive expressions will only be written when it can be
shown that the represented value is in the proper range.
For example, in order to replace TF by cprod(0, x,y) it
would be necessary to show that —-B <7y < B.

To help the reader understand how primitive expressions
are manipulated it is useful to consider some examples.
To make the numbers easier to follow the the rest of this
section assumes that B = 100.

Consider
sum(0, prod(55, 11 @ x), mult(—500,18,29 & y))

Substituting from the above equations shows that this
represents the value

(55(11 +%/100)/100) + (—500 + 18(29 + F/100))
= 28.05 + .0055% + .18F

Because X and ¥ are known to be small values (i.e. have
absolute value at most 100) this value must be between
-12.5 and 46.6 Suppose we want to determine the integer
part. We first determine bounds on ¥ and §¥. Suppose we
examine x and find that ¥ is bounded by -15 and -5. This
means 28.05+.0055% is bounded by 27.9675 and 28.0225.
Dropping extra bigits past the decimal point the bounds
can be stated as 27.96 and 28.03. That is, the possible
values of 28.05 + .0055% have a range less than .07. If
we can determine the value of .15F to within less than
.93 we would have an uncertainty of less than 1.0 in the
overall number and this will allow us to determine an
integer part for the overall number. If examination of y
does not immediately yield a range of 6 we will manip-
ulate it until it has such a range. This process is called

narrowing. If all else fails we may have to expand y into
its integer and fractional parts. However, frequently we
can manipulate the primitive expression so as to deter-
mine bounds within the desired range without expanding
it. Assume that such manipulation yields bounds on ¥
of 20 and 25. This yields bounds on the value of 31.56
and 32.53. implying an integer part of 32. To determine
a primitive expression for the fractional part we work
backwards. To reach 32 we used 6 from 55(11 + X/100)
and 26 from —500+15(29+¥/100). We can rearrange the
first of these as 6 +mult(—600, 55,11@®x) and the second
as 26 + mult(—400, 18, y) to give the final expansion as

32 @ sum(0, mult(—600, 55, 11 & x), mult(—400, 18,y))

3 Algorithmic Notations

The algorithms in this paper are presented in an equa-
tional style. The left hand side of each equation is a
“pattern” specifying a condition, and another condition
involving values may optionally be specified with an ex-
plicit “if”. The intention is that these can be translated
into an ordinary recursive function in a language such as
LISP or ML.

For example, consider a (nonsense) function ugly which
has equations:

ugly(sunm(a, zero,y))
ugly(sunm(a, x, zero))
ugly(prod(x,y))
ugly(a ® x)

1+ ugly(y)ifa=0
1+ugly(x)ifa=0
0

a + ugly(x)

Il

I

Within a block, the equations are regarded as ordered
so the conditions are not neccessarily exclusive. When
equations for a funtion are presented in multiple blocks
(usually scattered in several positions in this paper) they
will (except as noted) treat independent cases and the
order of blocks will not matter. An equation containing
@ on the left hand side has a special meaning. It repre-
sents a method to be used if no other cases match. This
consists of calling expand on the argument before at-
tempting to use it. Since (see section 6) a call of expand
always terminates with an expanded, such a pattern will
always succeed. Hence it should always be ordered as
the last case

4 Expansion

Computation on exact numbers consists primarily of
building primitive expressions and expanding them. The
later is done by a function expand that takes a primitive

expression and yields an expanded primitive expression
satisfying

X

expand(x)

The full expansion of a primitive expression is deter-
mined by expanding it, expanding the fractional part,
expanding the fractional part of that, and so on. Al-
though expand always terminates, the process of exam-
ining the fractional parts may proceed indefinitely. Thus
the representation can deal with arbitrary (computable)
real values.

Two important special functions for picking apart the
integer and fractional parts of primitive expressions get
their own special notation

a
X

[a (&) x]ipart
[a ® x]spart

Notice that by the conventions of section 3 these equa-
tions imply that a call of expand will be performed when
neccessary.

The definition of expand uses some auxiliary functions
satisfying

—B < leading(x,y) < B

—B < carry(x,y) < B

—B < carry(x,y,z) < B

Xy = leading(x,y) B + low(x,y)

X + ¥ = carry(x,y) B + plus(x,y)

X+ ¥ + Z = carry(x,y, z) B+ plus(x,y, z)
c+X

<1

if § > B/2 then ‘approxq(c, x,y) —

c+X

if ¥ > B/2 then

approxq(c, x, y)
+trailing(c,x,y) B!

leading, carry (two and three argument versions) and
approxq return bigits. low, plus (two and three argu-
ment versions) and trailing return primitive expres-
sions. Functions taking primitive expressions can be ex-
tended to accept bigits by using the primitive expression
a @ zero in place of a.

The equations for expand are displayed in figure 1. Im-
mediate inspection shows that the right hand side of each
of these equations is an expanded expression. To show
that the right hand side satisfies the requirements on
expand the following must also be shown. (Termination
is discussed in section 6)

e The right hand side represents the same value as
the left hand side. These are simple algebraic exer-
cises using the assumed properties of the auxiliary
functions.

o The fractional parts represent small values. Again
simple algebraic manipulations suffice, using the

expand(abs(b & x))
expand(abs(b & x))
expand(abs(b & x))
expand(cprod(c,a ® x,b D y))

0@ abs(x)if b=10
boxifb>0
~b@® minus(x) if b< 0
(¢ +ab+ 1eading(b, x) + leading(a,y)
+carry(mult(—leading(b, x)B,b,x),

mult(—1leading(a,y)B, a,y),
prod(x,y))

®plus(mult(—leading(b, x)B,b, x),

expand(minus(b. x))
expand(mult(c, m,b® x))

mult(—leading(a,y)B, a,y),
prod(x,y))

—b @ minus(x)
(¢ + mb + leading(m, x))

émult(—leading(m, x)B, m, low(m, x))

expand(prod(x,y))
expand(quot(c, x,y)
expand(sun(c,a & x,b P y))
expand(zero)

Figure 1:

properties of the auxiliary functions and also the as-
sumption that the subexpressions of the argument
to expand represent smalls.

The integer parts i satisfy —B < i < B. This is
a bit tricky. (And requires some modification to
the above equations.) Since the fractional parts, z
are known (by the previous item) to represent small
values, B~1% is between -1 and and 1. Since the
right hand side is known to represent the same value
as the argument of expand, which is assumed to
represent a small value, this implies -B -1 < i <
B+ 1. If i = B+ 1 then the only possible value that
the argument of expand could represent is exactly B.
The author has been unable to construct an example
in which ¢ = B + 1 would arise, but he has also
been unable to prove it cannot. If it does then the
expanded value could be replaced by an appropriate
primitive expression. If ¢ = B then z must represent
a negative value and we may replace the expanded
value by (B — 1) @ sum(B, z, zero).

The above equations must be replaced by equations
that incorporate some additional transformations in
the above special cases.

Similar manipulations are necessary when the inte-
ger part would be —B — 1 or —B.

4.1 Details of Addition

This section discusses the details of expanding addition.
Addition is the simplest (binary) operation. Multiplica-
tion (in its various forms) and division follow essentially

leading(x,y) & low(x,y)

approxq(x) ® trailing(c, x,y)
(c+a-+b+ carry(x,y)) @ plus(x,y)
0 ® zero

definition of expand

the same pattern, although the details are more compli-
cated.

The fundamental function is carry, the function that
determines the first bigit in the expansion of a sum. The
function plus is defined in terms of it.

Sum("carry(xs Y)Bv X, Y)
plus(x, plus(y, z))

plus(x,y)
plus(x,y,z)

carry is itself defined in terms of other functions. Two
of these are 1bound and ubound which satisfy.

—B < 1bound(x) < ¥ < ubound(x) < B

It is required that lbound and ubound always termi-
nate, and in practice it is important that they terminate
quickly without expanding any subexpressions. 1bound
and ubound might return arbitrary reals between —B
and B, but we need to represent and manipulate their
values directly. In practice a fixed point representation
is convenient. The real numbers returned by lbound
and ubound (and manipulated by the function narrow
discussed below) are represented by integers. Except for
a tricky place in division where a couple of extra bits are
required, a single bigit of precision after the “bigit point”
suffices. There are a lot of straightforward cases to be
defined in ways that resemble interval arithmetic. The
complete definition is omitted, but some typical cases
are:

lbound(abs(x))

= max(0, 1bound(x), —ubound(x))
ubound(sunm(e, z, y))

= min(B, ¢ + ubound(x) + ubound(y))

range is defined in terms of 1bound and ubound

range(x) ubound(x) — 1bound(x)

The final function required to define carry is narrow
which in many ways distinguishes the approach in this
paper from others. Assuming n # 0 it satisfies:

narrow(x,n) =X
range(narrow(x,n)) < n

narrow may return a primitive expression similar to x
with narrowed subexpressions or in “tough” cases ex-
pand it. In practice, it is important that narrow not
only return a new primitive expression, but that it also
modify the data structure that is its argument. This
avoids repeating work later. narrow is described further
in section 4.2

The cases in which carry(x,y) can be immediately de-
termined are

carry(x,y) = O0if ubound(x)+ ubound(y) < B
and
lbound(x) + 1bound(y) > —B
carry(x,y) = 1 if ubound(x)+ ubound(y) > 0
carry(x,y) = -1 if 1bound(x) + 1bound(y) <0

It pays to give the value 0 preference because doing so
avoids creating extra bigits in expansions that are later
removed. (This is discussed further is section 5)

In case none of the above apply to carry(x, y), narrowing
of one or both of the subexpressions is required before
one of the above equations can apply.

For more details of addition and details of multiplication
and division the reader is referred to a long form of the
paper available from the author.

4.2 Narrowing

narrow(x, n) is defined via a case analysis which either
determines the value or narrows some subexpression and
tries again. n must, of course, be non-zero.

The immediate cases are:

xifn>2B

x if range(x) < n
[x]ipart ® narrow([x]spart, n B)
ifn<2

narrow(x, n)
narrow(x, n)
narrow(x, n)

If non of the above equations is applicable, other cases
must be dealt with by narrowing some subexpression of
x and calling narrow recursively.

narrow(sum(c, x,y), n)

is dealt with according to the following scheme for nar-
rowing:

n —range(x) — 1
n —range(y) — 1

if 2 < range(x) < (n/2)
if 2 < range(y) < (n/2)
n/2 if range(x) > (n/2)
n/2) if range(y) > (n/2)

where x > m is an abbreviation for a right hand side
narrow(sum(c, narrow(x, m), y) and similarly for y &> m.

- KW
vvvy

Cases for other primitive expressions are omitted due to
space considerations.

4.3 Summary of Expansion

The process of expanding a primitive expression x can
be summarized

e See if the required bigit can be determined just by
examining “immediate” bounds on the values of the
subexpressions.

If not, narrow a subexpression of x until the bigit
can be determined. (This is the role of carry and
leading)

Return the expanded expression consisting of the
determined bigit, and a fraction built from the
subexpressions and the determined bigit. No further
expansion should be carried out. The various sorts
of primitive expressions must “fit together” properly
in order for this to be possible in all circumstances.

5 Representing All Reals

A primitive expression must be combined with an ex-
ponent to represent an arbitrary real number. Such a
data structure, called an ezact number, can represent an
arbitrary real number.

Manipulations are possible using the definition shown
in figure 2. This figure uses the notation x > s for
shift(x,s).) If the last case in the definition of = is
applicable the second case will apply to the recursive
call, but no such guarantee applies to the first case. In
this representation an attempt to construct the (non-
primitive) expression that results from a division by zero
does not terminate.

The special cases for shift are essential in dealing with
multiplication. Without them, much effort is expended
expanding leading 0 bigits.

It is important to deal with absolute value directly (with
its own primitive expression) rather than attempting to
do a comparison to zero. (See section 8.)

Bx+ Bly = B°®sum(0,x,y) if e=f
and carry(x,y) =0
Bx+ Bly = B*t!(carry(x,y) ife=f
EBsum(—carry(x, Y)By X, Y))
B°x+ Bly = Bx+B(y>(e—f)) ife>f
Bex+ By = B/(x>(f-e)+By ife<f
B (x> s)+B/(y>1) Be—*x + B/ -ty ife—s=f—t

Be(x>s)+ B/ (y>1)

i

Be=*x+ B~ (y > ((e — s) — (F —1)))

ife—s>f—1

Be(x > s)+ B/ (y>1) BI-t(x>((f-t)—(e—8)+B/ "'y ife—s<f—t
Bex x Bly = Bet/+lprod(x,y)
Bex+ B/ (b y) = —(B°x+ B/(—b®minus(y))) ifb<0
Bex+ B/ (bdy) = Bex+B/-ly ifb=0

Z -1
Bex+ B/ (bDy) (B*x x 1J)—:—(nyx [gb—J) i B/2>b>0
Bx+ B/ (b®y) = B*~fquot(0,x,y) if b > B/2

—B®x
| - Bex|

B°minus(x)
Btabs(x)

Figure 2: definition of operations for exact numbers

6 Termination of Expansion

Call a primitive expression x l-expandable if expand(x)
terminates. Call it k-expandable (for £ > 1) if expand(x)
terminates and [x}spar: is (kK — 1)-expandable. That is,
a primitive expression is k-expandable if it is possible to
compute the first k bigits of its fully expanded form.
The essense of the proof is to show that in order to ex-
pand a primitive expression it is neccessary to look only
at no more than two bigits expansion of any subexpres-
sion. More details are contained in the long version of
this paper

7 Infinite Series

The representation and algorithms presented so far may
have seemed to the reader as an elaborate and ineffi-
cient way to do arithmetic on rational values. Nothing
said so far has indicated how to create primitive expres-
sions for irrational values. This section describes how
the representation is extended to irrationals and even
transcendental values (such as /2 or 7).

Suppose we want to represent an infinite sum,

(which happens to be e, the base of natural logarithms.)

This is close enough to an expansion in terms of bigits
that we can imagine creating a new primitive expression
for it. Something like

exp(k) = mek(1/nl)
lbound(exp(k)) = O
ubound(exp(k)) = 3/k!
expand(exp(k)) = ...

Even before we try to address expansion we notice a
problem. ubound gets very small and since we represent
bounds with a limited precision it is quickly going to be-
come worthless. Also we notice that even if we could
make this work, the expansion of exp(k) for even moder-
ate size k’s would have a lot of leading zero bigits. There
would certainly have to be a way to keep track of these.
So more reasonable definitions are

exp(k, s) = B .(1/nl)
lbound(exp(k,s)) = 0
ubound(exp(k,s)) = 3B°/k!
expand(exp(k,s)) = 0@ exp(k,s+1)

if ubound(exp(k,s)) < 1
sum(0, 1 + k!, exp(k + 1, s))
if ubound(exp(k,s)) < B

Il

expand(exp(k, s))

The ubound expression treats k as a real number, while
the last equation for expand treats 1 + k! as a primi-
tive expression. An implementation would use an exact

number and look into the representation as necessary.
None of the manipulations required are difficult. The
comparison in the first case of expand can be done with
a generous tolerance (see section 8) because if it fails the
other case can be used without any problems. As usual,
we are careful to only construct exp expressions which
represent asmall. And we are careful that the arguments
of the sum represent smalls.

There is still a severe problem with the exp primitive
expression. Recomputing k! over and over will be expen-
sive. Avoiding that recomputation is a simple exercise
that is left to the reader.

Having seen how to deal with one infinite series it is
easy to generalize to any other infinite series for which
a bound on the sum of remaining terms can be be com-
puted. For example an exact number representing = is
easy to create. Using exact numbers to support the im-
plementation of primitive expressions is a useful trick for
handling bookkeeping.

8 Rounding and Comparisons

An important operation that has not yet been discussed
is testing exact numbers for equality to zero, or more
generally comparing them to zero. In the presense of
representations for series as in section 7 it is not always
possible to determine if a primitive expression is zero.

The basic function is sgn which satisfies

if sgn(x) =0 then¥ =0
if sgn(x) < 0 thenX < 0
if sgn(x) > 0 thenX < 0

These are one way implications, sgn(x) may not be de-
fined. In particular when x is a primitive expression that
would expand to an infinite sequence of 0 bigits, then it
may not be possible to know this and sgn could run on
forever. So sgn is given tolerance k whose purpose is to
indicate how much of x to examine before giving up. If
|X| > B~* then sgn(x, k) gives the correct result.

What should happen in the case that “reports failure”
depends on how sgn is being used. In some instances
it does represent a failure and computation should be
stopped. In other cases an arbitrary value (0, 1 or -1)
may be chosen.

Rounding or truncating are operations closely related to
comparison, but here the tolerance is used to indicate
the proper result when sgn would report failure.

9 Implementation Issues

The algorithms described in this paper have been imple-
mented as a C++(7] library. The interface to that li-

brary is described in Schwarz[6]. It consists of a defined
class(type) which to the programmer is very similar to
ordinary floating point types. The main difficulties in the
interface have to do with the tolerance issues discussed
in section 8. It should be emphasized that the library is
written entirely in C++ and the interface is an ordinary
C++ class declaration. No changes were necessary to
the language. This section describes some of the details
of the implementation.

The major distinction between the implementation and
the algorithms described in this paper is that the equa-
tions presented here are somewhat cavalier about re-
peated expressions, while the implementation must not
be so cavalier. This applies to the individual cases (where
computation is frequently repeated in conditions) and
to the overall structure. In the implementation each
primitive expression is represented by an object(i.e. a
record or struct) of a C++ class, Small. Subexpressions
are represented as pointers to other Smalls. Expansion
and narrowing are done by modifying the previously al-
located Small so that any other Smalls that point to it
see the improved representation. Bounds(lbound and
ubound) are computed and stored in the Small when it
is allocated and when it is expanded or narrowed. If a
narrowing or expansion of a subexpression occurs it will
not be reflected in the Small. In practice it is much more
important that bounds be computed quickly and accu-
rately than that they should reflect any change in the
form of subexpressions. C++ is not garbage collected,
but it does provide enough hooks for Smalls to be refer-
ence counted, which has been done.

Another case where significant performance improve-
ments can be made is in recalculating exponents of exact
numbers. That is, the exponent computed when an ex-
act number is originally allocated may be to large if the
expansion of the primitive expression is later found to
have leading 0 bigits. In that case the data structure
can be transformed by adjusting the exponent:

B¢(expanded(0,x)) — B°~lx

The base B is chosen as 2'3. This allows most manipu-
lations of small integers to to be carried out on with 32
bit integer arithmetic. (Two bigit accuracy suffices for
most manipulations, but in a couple of instances more
bits were needed. The worst case was in division where
extra bits were required to calculate a properly rounded
quotient.)

10 Complexity

There are several ways to ask the question “How com-
plex are operations on exact numbers?” Of course a lot

depends on what exponents are involved. In the the dis-
cussion of this section I assume that all the exact num-
bers involved have the same exponent (and the primitive
expressions are not shift’s). For multiplication and di-
vision exponents are irrelevant to complexity issues.

10.1 Basic Operations

How much slower are these algorithms than ordinary
floating point if no more precision is ever required than
can be provided by floating point?

This is a somewhat vague question and the answer de-
pends on exactly what operations are done and on low
level implementation details. Measurements of the im-
plementation discussed in section 9 yield factors of 50 to
100. That is, hardware floating point is 50 to 100 times
faster than that implementation. It is possible that some
tuning of the implementation can improve these results.

10.2 Multi-bigit Operation

How much work does it take to expand n bigits of a
sum, product or quotient if the subexpressions are fully
expanded?

For this case, the algorithms presented here are equiv-
alent to the ordinary naive implementations of multiple
precision arithmetic. Addition is linear in n, multiplica-
tion and division are quadratic in n.

10.3 Propagation of Demand

Given an expression that combines exact numbers, how
many bigits of the exact numbers will have to be ex-
panded for each bigit of the combination that is ex-
panded?

This is in many ways the most interesting question, and
it is also the hardest to answer because the algorithms
have been deliberately designed to take into account the
structure of the combinations. The results of section 6
give some lower bounds. But when expanding z + y
the algorithms do not work by performing some prede-
termined manipulations on z and y and then combining
the result. Instead, they perform some manipulations on
one of the operands, look at the result and use that to
determine what manipulations to do next. So the actual
performance can in many cases be much better.

To analyze addition note that the range of an expanded
primitive expression is (at most) 2. When adding x
and y, it is never necessary to expand them further if
range(x) + range(y) < B. Thus it is possible to form
a primitive expression for the sum of B/2 exact num-
bers whose primitive expressions each have a single bigit
of expansion without forcing any more expansion. And

this can occur however the expression is “shaped”. That
is it applies to an unbalanced “tower”:

(2+(z+(z+...)

As well as to more balanced expressions:

(RO (G ()

Multiplication is harder to analyze than addition. The
techniques for limiting propagation of demand are not
as effective as for addition and a multiplicative tower
performs signficantly worse than a balanced expression.

References

[1] T. E. Hull, A. Abraham, M. S. Cohen, A. F. X. Cur-
ley, C. B. Hall, D. A. Penny, and J. T. M. Sawchuk.
Numerical turing. SIGNUM Neuwsletter, 20(3), July
1985.

[2] Guy L. Steele Jr.

Digital Press, 1984.

Common LISP: The Language.

3

—

Hans-J. Boehm, Robert Cartwright, Mark Riggle,
and Michael J. O’Donnell. Exact real arithmetic: A
case study in higher order programming. In 1986
ACM Conference on LISP and Functional Program-
ming, Cambridge, Mass., 1986.

{4] Hans-J. Boehm. Constructive real interpretation of
numerical programs. In SIGPLAN ’87 Symposium
on Interpreters and Interpretive Techniques, St. Paul,
Minnesota, 1987.

[5] Jean Vuillemin. Exact real computer arithmetic with
continued fractions. In 71988 ACM Conference on
LISP and Functional Programming, Salt Lake City,
Utah, 1988.

[6] Jerry Schwarz. A C++ library for infinite precision
floating point. In C++ Conference, 1988.

[7] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, 1986.

