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Abstract

A gate array implementation of a radix-2 floating-
point on-line division algorithm is presented. The
design requires 111 equivalent gates per bit and has
a cycle time of 24ns. For 8-bit exponent and 24-bit
mantissa, the design requires 2497 equivalent gates
and can fit on an LSI Logic LL9320P chip with a
utilization factor of 78%.

1 Introduction

In this paper, we present a gate array implementa-
tion of on-line division. We include the derivation
of binary level algorithm and design parameters, the
gate-array design, and its performance characteris-
tics. We choose the radix-2 floating-point on-line di-
vision algorithm, since division is the most complex
among the basic on-line operations, and also because
other on-line operations such as multiplication and
square root can be realized with minor modifications
of the division design. We choose radix-2 because it
can serve as a basic measuring stick for higher radix
on-line arithmetic designs.

2 The radix-2 on-line division

algorithm

The radix-2 floating point on-line division algorithm
described here is based on the algorithm and deriva-
tion presented by Trivedi and Ercegovac[4], and by
Trivedi and Rusnak[5]. We modify the algorithm
and derive key parameters, taking into consideration
the following constraints, (i) the input operands in
on-line arithmetic are not guaranteed to be normal-
ized, and (ii), the recurrence computation is imple-
mented in redundant form.

Assuming that the mantissa of the input divi-
sor, denoted by D', is quasi-normalized[8], we have
D' € [22,1), which means that it has at most one
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leading zero. After accumulating the first §—1 input
bits, where 6 is the on-line delay, the initial input di-
visor, denoted as D Zf;ll d;2-%, is conditionally
shifted, and the initial value of the divisor actually
used in the quotient computation, denoted by Do,
is obtained as

n-|

We then have, for all j > 0, D; € (27! —27%+11).

Two related parameters affect the performance of
on-line division. One is the on-line delay, é§, which
is defined as the number of digits of each operand
accumulated when the first digit of the output is
generated. The other parameter is the precision of
the digit selection function, k, defined as the num-
ber of fractional digit positions of the argument re-
quired by the selection function. There is a tradeoff
between § and k, and small values of both of them
are desirable for best performance. Based on the
analysis given in [6], we choose § = 5,k = 4.

In the following floating-point on-line radix-2 di-
vision algorithm e,, e4 and e, denote the expo-
nents of the dividend, divisor, and quotient, n,.z:,
dpert and g; denote digits of their mantissas, and
D; and Q; are accumulated values of j fractional
digits of the divisor and quotient, respectively. The
subscript nezt denotes the subscript of the next in-
coming digit. In step j, nezt = j + 4 if the divi-
sor was not shifted during initialization. Otherwise,
nezt = j+5. The dividend mantissa is shifted right
one bit position to avoid possible overflow of the re-
sult.

D), if Dy > 21
2. Dy +ds2-%+if D) < 27!

Algorithm OLDIV [Radix-2 on-line division]
step 1. [Initialization and shifting]
€g—en—eq+1
A() — E?:l ﬂi2—i-l
Dy — Y i, di2™



if Do < 27! then
Dy «2-Dg + dneﬂ2—4;
Qo—0; go—0
step 2. {quotient generation]
forj=1,---,mdo
Dj — Dj—l + dnc:tz—j-—4
Aj — 2(14,'..1 —gj—1D;j) + pess2™?
_dnu:tQ;i—'.’Z_4

eqc—eq—l

—1if A; —%
g; = select(A4;) — ¢ 0 if —5 < A; < 2
1 if4; > &

Qj — Qj_1+9;27
end OLDIV.

3 Functional components of

on-line division
The scheme implements exponent and mantissa cal-
culation. Exponent calculation for division includes

the following functions, which are performed during
step 1 of the algorithm OLDIV:

l.eg—en—ea+1

2. ifD(')<% then e, —e;—1

We assume that the exponents of the input and out-
put are in parallel form, so that the exponent cal-
culation is implemented by a conventional parallel
adder. The mantissa calculation is performed in on-
line fashion. During each time step, the following
recurrence expression is evaluated to obtain inter-
mediate result Aj;,

Aj — 2(Aj_1—qj1Dj + Npert2  — dnextQj—22_(5§
1
The next quotient digit is calculated as a function
of A;.
The following functional components are to be re-
alized in on-line division mantissa calculation. In
this paper, a signed bit is referred to as a sbit.

Data accumulator The values of ¢; and d; need
to be accumulated to provide Q; and D; for the
recurrence evaluation. In each step, the following
function is performed,

Dj - Dj-l + dne.rtr—j-6 (2)
Single sbit multiplier The terms ¢;j_;D; and
dpezt@j—2 in the recurrence are generated by multi-
plying a fractional number by a single sbit.
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Figure 1: Functional components for on-line division

Adder A multiple input adder generates A; as the
sum of A;_; from the previous time step, the prod-
uct terms g;j_1D; and dpertQj-2, and input sbit

Nnext-

Selection The quotient digit selection function cal-
culates the next quotient digit from A;. Since
-3_2 ,-j-3
|4;]<2-2 —3-2 < 2
the input to the digit selection function will involve
1 sign bit position, 1 integer bit position, and 4 frac-
tional bit positions, for a total of 6 bit positions.

Fig.1 illustrates the functional components of on-
line division.

4 Binary level algorithm

In this section we specify binary level algorithms for
each functional component of on-line division. The
mantissa computation specified in OLDIV is modi-
fied such that the initialization step is incorporated
as part of the quotient calculation step with sim-
ple control requirements. Then operations for each
functional component are discussed in detail.

The Npes:2~° term in (1) represents a shifted sin-
gle sbit, and it is desirable not to let this single sbit
cause extra delay to the overall computation. Since

| - dnethj—lI <1

and in 2’s complement representation we obtain the
terms 1,275, P = —dp.z¢Qj_127°, and their sum as

Ng . Ng Ng Np No N1 00-:.-. 0
Ps - Ps Ps Ps Ps Ps P1 P2 **° Pj—-1
.z z 2z YyprprePi-1




where z and y are simple switching functions of ny,
ny and p,,

T = no+Mp,s (3)
y=n10p, (4)

The terms n,.::27% and —dp.s:Q;-1275 can be
combined as one term for the multiple input adder.

The initialization step of algorithm OLDIV re-
quires accumulating incoming sbits of N and D.
In order to achieve an efficient design, we want to
minimize the difference between computations per-
formed during initialization and quotient genera-
tion. The expression for Dy is the same as that
for D; in the quotient generation step. By keep-
ing ¢j = 0 in the recurrence expression (1), the
expression for computing A; during quotient digit
generation becomes the same as that for computing
Ay during initialization. This simplifies the control
mechanism for the recurrence evaluation. The mod-
ified mantissa algorithm (higher level) follows.

Algorithm OLDIVM
[Modified radix-2 on-line division algorithm)]
Initialization
A—4 = 07 D-4 = 0» Q—5 =0
q-4=0, ] =-3
begin [recurrence]
Dj - Dj—l + dnez:t2—-'i“4
Aj — 2(Aj-1 - Qj—le + nne:n2—5
_dnextQj—22_5)
_Jo if j<0
9 {select(Aj) if j>0
Qj-1+— Qj_a+gj_1277H!
if j =0 and Dy < 2-! then
Dg — Do -2
else if j > m then stop
elsej —j+1
end [recurrence]
end OLDIVM.

4.1 Data accumulation and conver-
sion
While the input and output of the on-line divi-
sion computation are in signed-digit representation,
the internal computation can be implemented in ei-
ther redundant or non-redundant form. For speed
consideration, it is advantageous to use redundant
adders to avoid full precision carry propagation. We
choose to implement the recurrence expression eval-
uation in 2’s complement number system with carry-
save adders, and to accumulate D; and Q; in 2’s

previous input

init/ld | bit-flag 0 1 -1
0/0 Oc Oc Oc Oc
Ou Ou Oc Ic

lc le 1lc 1c

1u lu 1lc 0Oc

1/* Oc 0Oc Oc
0/1 Ou 1lu 1lu

Table 1: Conversion transition table

complement form. Another possibility is to imple-
ment this computation in signed-digit form with
signed-digit adders.

An on-the-fly conversion algorithm is given by
Ercegovac and Lang[3] which converts a series of
signed-digits into non-redundant parallel form. We
adopt the modified version of this algorithm given by
Tullsen[7], which is slightly simpler. Here we briefly
describe Tullsen’s algorithm. For more details of the
data conversion algorithms, refer to [3] and [7].

In this algorithm, each bit position has a flag,
which indicates whether the current bit is con-
firmed(c) or unconfirmed(u). An init signal applies
to all bit positions at the beginning of the process,
and a ld signal is applied to each bit position in suc-
cession(i.e., the Id signal is applied to bit i when
the ith sbit is available). For each bit, its value and
flag are set according to the transition table given
in Table 1.

In the following, we use superscripts to denote the
bit position of a vector element within the vector,
subscripts to denote the time steps, and use upper
case latters to denote vectors, lower case letters to
denote single bits of the vectors. At time step 7, let
z; denote the input sbit, A; the accumulated value
of sbit series z1,z3,---,zj, C; the vector of flags
associated with A;, and ZJ = (z,(l),z}z),-- -,zJ(p)) a
shift register, where

m_Jrif I=j
GOT06f 1£j

Then, the data conversion algorithm is the following.
(A‘j, éj, Z,) - convert(fi.j_l, éj_l, Zj_l, z;j,init)
where the function convert is defined as
agi) — f(=zj, a§i_)l, cg-i_)l, zJ(-i),
cgi) — g9(zj, cgi_),, z](-i), init)

(i-1)
1

init)

o



The functions f and g are defined according to Table
1, with Id substituted by z{".

4.2 Multiply by a single sbit

In the recurrence expression evaluation, we need to
implement computations of the form Z « z; - Y,
where Z and Y are fractional numbers, and z is a
single sbit. In 2’s complement computation, this can
be obtained by the following function,

Y if zj=1
Z=<0 ifz;=0
-Yif Tj = -1
where —Y can be generated by bitwise complement-
ing Y, and adding 1 to the right-most bit position

to obtain its 2’s complement. The binary level algo-
rithm for the single sbit multiplier is the following.

. y(i) if fj:(Ol)
2D 0 if Z;=(00)
¥ if £ = (11)

4.3 Multiple input adder

Since the recurrence evaluation is performed in
carry-save form, there are 4 input terms to the
adder. Two levels of 3-to-2 reductions are used to
realize the required 4-to-2 carry-save adder(Fig.2).

4.4 Quotient digit selection
Since the result A; of the recurrence expression eval-
uation is in carry-save form, the quotient digit selec-
tion function is divided into two parts(Fig. 3). First
the most significant portion of A; is converted into
non-redundant form through a carry-assimilation
adder. Then the next quotient digit is generated.
As discussed in Section 3, the quotient digit se-
lection function requires the input of 6 bit positions,
hence a 6-bit adder is used. Carry-lookahead is used
to reduce the time required for this function. The

following is the algorithm for the carry-assimilation
adder.

(z(U)x(l)1(2)3(3),,(4);,,(5))
(YO y(Dy(2)y(3)y(4)4(5))
(200201 (2)(),(4) ,(5))

— cpab(X,Y)

Ny Ny

where

L0 {

2@ @ y® i=5
Dy acdi=0,1,23,4
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Figure 2: Structure of 4-to-2 adder
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Figure 3: Quotient digit selection
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The quotient digit generation function is defined as
7= (¢gM) a® = ()
¢ — o@D + 2@ + a® + a@ . a®)
¢ — a(°)('&m+@+a_(3_)+m-5f5—>)
+Zﬁ')'(a(l) +a® + a®)

5 Pipelining
To minimize the step time of the computation, we
use a two-stage pipeline scheme, as shown in Fig.4,
where the shaded boxes indicate the buffers.

In stage 1, the following calculations are per-
formed.

Dj - Dj-l + dnext2_j_4
A; — 2(A_Ii_l - (Ij—ZDj-—l) + nnezt2—5




541 dj1
-1
Conversion
Q
Qj-1
4 djy1
Conversion

Figure 4: Pipeline scheme for on-line division

—dne:ctQj—22—5
Qj-1— Qj_24¢q;_1277+!

And in stage 2, ¢; is generated.
gj + select(2(Aj — ¢j_1D;))

Fig.5 illustrates the timing of the mantissa computa-
tion. The most time consuming part in the compu-
tation is the quotient digit selection function, which
includes the 6-bit carry assimilation adder and quo-
tient digit generation logic. The critical path, which
is shown in thick lines in Fig.4, is that from the g;
buffer output to the signed digit multiplier to CSA2

Step cj—2j—-1 j j+1--..

Input . d_,'_l dj dj+1 dj+2

L 2 L L & S WL T M

Values -Dj_y Dj Djy1 Djya -+
Calculated

'--Q;-a le-z Qi1 Qj
[ !
CALy A A Ajge e
cqi-2 ¢i-1 q; gi41

Figure 5: Illustration of timing for on-line division
mantissa computation
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Figure 6: Modular structure of on-line division unit

M,

to Select to the g; buffer input. The pipeline scheme
given here allows extra time in stage 1 for the dis-
tribution of ¢; and d;.

6 Organization and design of

on-line division unit
The on-line division unit is organized as a linear
array of modules, as shown in Fig.6. The first mod-
ule M;, shown in Fig.7, contains components for
generating control signals(CTRL), exponent calcu-
lation( EU), quotient digit selection(SELECT), and
bit-slices for the most significant portion of the re-
currence calculation, which includes the sign, inte-
ger bit positions, and 5 fractional bit positions. The
modules My, -+, M, are identical, each containing
a number of bit-slices of the recurrence expression
evaluation.

From the algorithm OLDIVM, the number of
fractional bit positions involved in the on-line recur-
rence computation is j+4 at step j. To generate the
jth quotient digit, only the 4 most significant frac-
tional bit positions plus the sign and integer parts
are needed, so it is not necessary to carry out the re-
currence expression evaluation in full precision. Let
Nyrac denote the number of fractional bit-slices used
in the selection function, njn¢ the number of bit-
slices in the integer portion including the sign bit,
and 6 be the on-line delay. To generate m quotient
bits, the number of bit-slices needed is

6+ m+9
o= [2 o 2] = [2] 41 0

For on-line division of 24-bit precision, 18 bit-slices
are needed.

Assuming an 8-bit exponent, the main component
of EU is an 8-bit parallel adder with carry looka-
head. Fig. 8 shows organization of the exponent
component.

Each bit-slice includes functional components for
data conversion, signed digit multiplication, and
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carry-save addition. Fig. 9 shows the bit-slice orga-
nization.

Two slightly different designs of the bit-slices are
used in module M; to incorporate the Npezt2™ % term
in the recurrence expression. As was discussed in
section 4.2, the most significant bit positions in the
recurrence expression evaluation need to generate
the values z and y, which are defined in (3) and (4).

The quotient digit selection function is composed
of carry assimilation and quotient digit generation.
The carry assimilation is realized by a 6-bit adder
with carry lookahead.

7 Design characteristics

To estimate the implementation characteristics, the
on-line division unit design is captured and simu-
lated with the WORKVIEW?! CAD tools[2] and the
LSI? Design Kit[1] by Viewlogic Systems, inc.. The
gate level complexity of the design is measured in
terms of equivalent gate, which is equivalent to two
n-channel and two p-channel transistors. The total
gate count for the on-line division design is

G giv = Gm1 + Ghit.stice X '

LWORKVIEW is a trademark of Viewlogic Systems, Inc..
21,81 is a trademark of LSI Logic Corporation.
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Figure 7: Module M1 of on-line division

[ component [ equiv. gate |
EU 248
po, P1, ..., P5 6x119="714
SELECT 72
Control, Buffers 69
M, Total 1103

Table 2: Gate count of M,

where n’ is the number of bit-slices in modules M3,
ey My My contains the most significant 6 bit-
slices, so from (5) we have

n'=|rm—;-—9-‘+l—6

Table 2 shows the equivalent gate counts of the
components of module M. M consists of compo-
nents necessary for the generation of quotient man-
tissa digits and exponent, and has a fixed gate count
regardless of the precision of the computation. Ta-
ble 3 shows the component gate count of a bit-slice.
An on-line division unit for single precision floating
point operands with an 8-bit exponent and 24-bit
mantissa has a total gate count of 2497, including
the input/output drivers for the chip, and can be
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Figure 8: Division exponent unit

implemented on a LL9320P gate array chip with a
utilization factor of 78%. The dimension of LL9320P
is 6.19 x 5.83 mm.

Fig.10 shows the dependencies between compo-
nents in the cycle period of the exponent and man-
tissa calculation. The time delays of the major com-
ponents are shown in the timing diagram in Fig.11.
The figures are estimates based on the load driven
by each component, design parameters of the LSI
LL9000 series gate array components, and average
wire lengths without performing the actual routing
and layout design. In Fig.11, FD denotes the tran-
sition of D flipflops, and setup is their setup time.
CONVERT is the time for converting from signed

component equiv. gate l
conversion 2x32=264
sbit multiply 2x6=12
FA 2x10=20
Buffers and drivers 15
bit-slice total 111

Table 3: Gate count of bit-slice
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Figure 9: Bit-slice for on-line division

digit form to 2’s complement form. n; I/0 and d;
I/0 are the input pad buffer delays for the dividend
and divisor. Dashed lines in the diagram denote
components that are connected in sequence but not
in the critical path. The step time for the design is
determined by the delays of the multiplier, the full
adder, and the quotient digit selection unit, as is in-
dicated by the critical path in Fig.4. The points I,
2, 8 and 4 in Fig.11 refer to points along the criti-
cal path labeled in Fig.7 and Fig.9. The minimum
step time, with the LSI LL9000 series components, is
24ns. This figure includes the input pad buffers for
the dividend and divisor, but does not include the
output pin drivers required for the quotient. The
delay of the output drivers depends on the load of
the output pins for the quotient.

8 Summary

We have discussed the radix-2 floating-point on-line
division algorithm from the implementation point of
view. Under the assumption that the operands are
guaranteed to be quasi-normalized, we selected the
values of the on-line delay § = 5 and the precision
of the quotient digit selection function k = 4.
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Figure 11: Timing of on-line division
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Inc., 313 Boston Post Road West, Marlboro, Mas-
sachusetts 01752, September 1987.

Figure 10: Dependency graph for on-line division
step

We then presented a modular design of the on-
line division unit, using the LSI Logic HCMOS gate
array technology. To increase the precision of the
computation will only require some more bit slices,
and the step time will not be affected. Since full
precision calculation of the recurrence expression is
not needed in on-line division, it requires fewer bit
slices than parallel schemes.
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