A SOFTWARE IMPLEMENTATION OF SLI ARITHMETIC

Peter R Turmer

Mathematics Department
US Naval Academy
Annapolis, MD 21402

ABSTRACT

In this paper we describe an implementation of the symmetric
level-index, sli, system, some of its special features and some
computational ~ experience with it. The particular
implementation discussed was developed for use on IBM-
compatible PC machines and is written in Turbo PASCAL.
This allows many of the attractive features of a potential
hardware implementation of sli arithmetic to be readily
incorporated. The ease of performing extended computational
operations, such as scalar products and evaluation of
polynomials, is evident from the package. The computational
experiments reported here also show the great simplicity of
program structure which this robust arithmetic permits.

1. Introduction

This paper is largely concerned with implementational details
of the symmetric level index, sli, system for computer
arithmetic. This system which evolved from the original level-
index, ki, system introduced by Clenshaw and Olver [2], [3] is
described in detail in [5]. The particular implementation
discussed is contained in a Turbo PASCAL unit for
implementation on IBM-compatible PC’s which is available
from the author. The choice of this programming language is
justified by the great flexibility it offers for bit manipulation
and creating new data types. Some of this justification will
become apparent shortly. There are other software
implementations of the li and sli systems, typically in
FORTRAN, and results of numerical experiments with these
have been reported elsewhere. (See [3] and [6] for example.)
Possible hardware implementations have been discussed in [7]
and [9]. The principal motivation for the present work is to
obtain further insight into the eventual hardware design whilst
providing a convenient vehicle for further computational
experimentation.

The implementation under discussion incorporates much
more than just the basic arithmetic operations. The very nature
of the level-index representation (which we review briefly
below) makes it entirely natural to incorporate the operations
of forming powers - both integral and nonintegral - and roots.
Also included are the standard elementary functions as well as
sli vectors and their scalar products and norms.

In [10], it was stated that the evaluation of polynomial
functions can be particularly efficient in the sli system. This
claim is substantiated by the inclusion of this operation as a
built-in function. This, and the other special features of the
implementation are discussed in detail in Section 3.

The extension of the euclidean vector norm to the more
general p-norms is considered in Section 4 on computational
experience. The importance of this operation arises not just
from mathematical interest but more significantly from the
need to be able to compute these quantities efficiently for some
of the recently developed and highly promising approaches to
multivariate approximation using radial basis functions. (An

U.S. Government Work. Not protected by
U.S. copyright.)

introduction to this topic can be found in [8].) This particular
operation goes a long way towards answering some of the
(unsubstantiated) criticisms of the level-index systems. The
operations could not be performed in floating-point
arithmetic. (A quick look at Blue’s algorithm [1] for the
euclidean norm will convince anyone that it will be an
immense task to cope with the more general p-norm problem.)
However the sli implementation of this operation is entirely
straightforward and accurate. This latter claim is justified by
demonstrating the convergence of the p-norm of a vector to the
maximum or supremum norm as p increases.

We begin with a brief review of the li and sli
representations and a general description of the computer
package.

2. Review and description of the implementation

A positive number X is represented in the li system by x where
X = ¢(x)

and the generalized exponential function
positive arguments by

2.1
¢ is defined, for

X 0<x<1,
o(x) = 2.2)
exp(0(x—1)) x> 1.
It follows that x = [+ f where /, the level, is a nonnegative
integer and the index f € [0, 1) is given by

f = In(In(...(n X) ...)),
the natural logarithm being taken [times.
In the symmetric level-index system, a number in the
interval (0, 1) is represented by the li image of its reciprocal.
Thus a real number X can be represented by

X = o). 2.4
The arithmetic algorithms for the 1i and sli systems are
described in detail in [3] and {5] and possible schemes for their
hardware implementation were discussed in [7] at ARITHS.
Before proceeding to the arithmetic details it is worthwhile
to discuss briefly the representation used within the software
unit since this is one instance in which greater insight into the
eventual hardware configuration is achieved. On conversion
from floating-point input to symmetric level-index form the
separate pieces of the representation are obtaified and then
packed into a single 32-bit long-integer format with the sign
and reciprocation sign occupying the two most significant bits
followed by the three bit level and the index. This is achieved
in the procedure Pack whose Turbo PASCAL code is listed
below.

2.3)

Procedure Pack(psix: slirec; var x: slisingle);
{Packs the sli record form into one
32 bit integer variable}
{Uses 1’s complement forms to preserve
usual integer ordering}

var Ix : longint;

begin
with psix do begin
Ix := level;

x := (Ix shl 27) or index;

if r then x := x or ¢30 else x := not(x shl 2) shr 2;
{INSERT RECIPROCATION SIGN AND

1°s COMPLEMENT LEVEL AND INDEX
FOR RECIPROCAL FORM }

if s then x := not(x);

{1’s COMPLEMENT FORM FOR NEGATIVES}

end;
end;

As usual the principal sign bit takes the value 1 for negative
and 0 for positive quantities. The representation of —X is
simply the 1’s complement of that of X. The reciprocation sign
takes the value 1 for quantities with absolute value greater than
unity. In the case of quantities with absolute value less than 1,
the representation of the level and index is also negated. This
has the effect of preserving the natural ordering of the integer
representation used.

This procedure also illustrates some of the reasons for
choosing Turbo PASCAL as the programming language. The
use of the boolean operations and shifts renders the coding of
this procedure very similar to the hardware instructions which
would be needed for this representation. The two variable types
in the procedure declaration, slirec and slisingle are defined in
the main part of the unit. Slirec is a record consisting of two
boolean variables for the sign and reciprocation sign, a byte
variable to hold the level and finally a "longint" for the index.
(Of course the index should be a fixed-point fraction and so
this integer quantity must be shifted accordingly for the
arithmetic.) The variable type slisingle is simply a long-integer
which is being used for the storage of sli data in the manner
outlined above. The quantity c¢30 used in the procedure is one
of several such longint variables which are used in the
package; it is defined to be 1 shl 30 so that it is equivalent to

2?0 and is used for insertion or detection of the reciprocation
sign.
A corresponding procedure "Unpack” is used to obtain all
the individual components of an sli number using similarly
simple bit-pattern manipulations.

The algorithms for li and sli arithmetic are based on the
computation of the terms of three short sequences. For
example, the case of computing z such that

0(2) = o) +6(y) (x2y) (2.5)
uses the sequences
a = 1/6(x=1, b = 0(y-j /o), 2.6)

and

¢ = 0z / o(x=j)

which are computed from appropriate starting values by
recurrence relations. In the implementation under present
consideration, this computation uses the built-in logarithm and
exponential functions. (This would not be the most efficient
approach in a hardware implementation; see [7] and [9] for
possible methods to be used in hardware.) In addition to the
usual arithmetic operations, the level-index systems lend
themselves to the natural inclusion of exponentiation as part of

the basic arithmetic package. Indeed the computation of o(x)*
is typically a slightly simpler and quicker operation than any of
the four standard operations.

Also included in the Turbo PASCAL unit are all the mixed
integer-sli arithmetic operations. One of the criticisms which
has been levelled against the level-index system is that integers
are not represented exactly within it. Of course, just as with
floating-point arithmetic, it would be essential to have integer
variable types alongside the sli variables. What is then
important is not whether small integers can be represented
exactly within the scheme but rather that they should be used
exactly within the arithmetic. This is true of the sli system but
not of floating-point.

Typically, within a floating-point system any integer
variables which are used in arithmetic with floating-point
operands as well are first converted into floating-point form.
Either at this stage or in the subsequent alignment shifts the
exactness of the representation is frequently lost. In sli
arithmetic, however, the integer is used in its original form. For
example, in the operation

$(z) = 0(x) +n

we still compute the sequence {aj} but, instead of setting

2.7

cp=1+Db,
as would be the case for (2.5), we now put
¢, = l1+na,

and the rest of the computation proceeds just as normal having
used the integer n exactly.

In a similarly simple manner, the other arithmetic
operations involving a mixture of sli and integer operands
including powers and roots are incorporated into the package.
The elimination of the b-sequence for these mixed operations
means that for a serial machine the arithmetic times for such
operations will be approximately 30% less than for the
corresponding full sli operations. (Again this contrasts with the
floating-point situation in which the integer-to-floating-point
conversion costs additional time.)

In [3] it was pointed out that the computation of extended
sums can be performed efficiently within the li system and
similar comments apply to the sli system. The gain in
efficiency derives from the fact that the whole calculation can
be based on the largest (in absolute value) term in the sum.
This feature is exploited by the built-in function "VectorSum"
in the Turbo PASCAL unit. The details are discussed in the
next section but the principal point is simply that just one a-
sequence (for that largest term) and one c-sequence are needed
in order to form the sum of any number of terms. Furthermore,
if sufficient parallelism is available, then all the remaining
sequences can be computed simultaneously with the
a-sequence reducing the operation time to just one standard
arithmetic operation time. The corresponding floating-point
operation requires of the order of log, n operation times, where

n is the number of terms being summed. It is clear that the
slower basic operation times of the sli system could easily
yield much faster overall operation times for extended sums.
As we shall see in the remaining sections of the paper, this
same economy of computational effort can be achieved for
computation of vector norms and the evaluation of monomials
- and even polynomials. (A different, but similarly simple,
routine is easily written for the computation of a "sum of
squares” such as might frequently be required in the solution of
systems of nonlinear equations: the routine included in the
present package genuinely computes the euclidean norm - not
its square.) Not only is the design of scientific software greatly
simplified with sli arithmetic, it is very likely that the overall
savings resulting from simplifications such as those alluded to

here will even reduce program run-times.

To give some indication of the ways in which these
savings can be made we mention briefly here the case of the
evaluaton of a simple = monomial term and then the
computation of the sum of the squares of two symmetric level-
index quantities.

For the former we require the value z for which

o2 = o) * ()" 2.8)

or similarly defined quantities in the cases where any of the
elements is in reciprocal form. For simplicity we consider the
case of (2.8) with x 2 y. (All the other variations are similarly
dealt with.) On taking logarithms, (2.8) becomes

&(z-1) = n*¢(x~1) + ¢(y-1) 2.9)

and division of this equation by ¢(x—1) now yields the
appropriate starting value for the c-sequence, namely

(2.10)

It is plain that this operation is no more complicated than any
of the four standard arithmetic operations with these same sli

¢, =n+b,.

operands. For an algebraic monomial of the form m ¢(x)" the
corresponding value of ¢, is n + ma,.

The case of the sum of two squares again reduces to a
simple adjustment of the starting value of the c-sequence as
follows. Again we describe just one case whose simplicity is
enti;ely typical of the operation, namely the calculation of z
such that

o) = 6(x)* + o(y)* (x2y).
Now, dividing by ¢(x)* and taking logarithms, we get
In (6() / 6(x)?) = 6(z=1) =2 6(x~1)
= ¢(x-1) (§(z-1) / 6(x—1) —2)
from which it follows that

¢, = 2 + In (6(2)/ 6(x)") / 6(x-1)

=2+a,lng,

(2.11)

(2.12)
where, for this case, ¢, is defined by
Co = () / 6(x)* = 1+b), (2.13)

The rest of the computation proceeds exactly as usual and the
total extra cost is the apparent multiplication of the fixed-
point, fixed precision fraction b by itself. However even this

can be avoided by shifting the argument of the exponential
function for the final step of the b-sequence one place to the
left. The Turbo PASCAL unit does not include this last
economy in its euclidean norm algorithm.

Again it is clear that as the arithmetic operations under
consideration become, or appear to become, more complicated,
so the simplifications offered by the new arithmetic grow.
These simplifications also entail a very significant reduction in
the number of round-off errors committed and are therefore
likely to deliver greater accuracy in the final result of the
computation. A detailed error analysis of extended sli
arithmetic operations will appear elsewhere.

3. Important features

The principal features of the sli arithmetic package fall into
three categories: scalar, vector and polynomial operations. In
several of these it is immediately apparent just how great the
benefit of suitable parallel processors would be. Some of these

20

benefits will be highlighted by considering operation counts.

Much of what is included in the scalar environment has
been described in the various papers and is summarized in [4]
along with results of some computational experience. However
there are just a few points of implementational interest to be
made.

The direct inclusion of mixed integer-sli arithmetic
operations extends the range of elementary functions in one
important way. In addition to the forming of integer powers of
sli numbers, we have incorporated the operation of taking
integer roots of any order. Again, this operation reduces to a
simple redefinition of the initial value for the c-sequence. (Of
course for PASCAL even the formation of integer powers is an
extension of the normal library of built-in functions.)

All the sli arithmetic operations are incorporated into the
function SLI which has the syntax Sli(x,’op’,y) where x and y
are variables of type slisingle and op is one of +, —, *, / and A,
The integer-sli operations are incorporated into two functions
depending on the order of the arguments; these have similar
syntax and the same list of operations. The taking of roots is
performed in a separate function, Root(x,n), which forms the

n™ root of the slisingle variable x. The square root is a special
case, SqRoot, which simply calls Root with n = 2.

At this stage the trigonometric functions are computed by
using the corresponding floating-point functions. The risk of
overflow errors here is completely acceptable since, as was
observed in [10], the attempt to attribute a specific value to,
say, cos ¢(x) for values x exceeding about 4 is meaningless as
it will have no accuracy at all because the absolute error bound
for ¢(x) is at least w/2. Of the other standard elementary
functions, the logarithmic and exponential functions are, of
course, straightforward while the arctangent is reduced by the
usual identities to the computation of arctan(a,).

Many of the more important features of the package are to
be found within the vector operations. Firstly, a variable type
slivector is declared which consists of an array whose elements
are of type slisingle. The size of the array was originally
limited to a subscript range of O through 100. This arbitrary
upper limit can be very easily varied to allow any dimension
which can be represented in one of Turbo PASCAL'’s integer
types, the only penalty being the additional memory allocation
which any larger range would incur. For our present purposes
the limit of 100 is no restriction.

The type slivector is of course likely to be used for the
terms of a series. For both this purpose and for the formation of
scalar products, the function SumVector(v,n) which sums the
elements of a slivector, v, with slisingle elements v[0] through
v[n] and returns the result in slisingle form. Both for this
operation, and for more general purposes, it is necessary to
identify the llargestl (that is, largest in absolute value) term in
the sum on which to base the efficient computation. The fact
that the representation preserves the natural ordering of the
integers used makes this particular operation particularly
simple and we do not discuss the details.

The great efficiency of this operation is due to the fact that
if we seek the sum

O(xp) TOX)E ... (X)),

where, without loss of generality, we may assume

3.1

Xo 2 X, k=1,2,..,n)
then the appropriate value of ¢ is just

Co = 1%by, by, *... by, 3.2)
where bo_k = 0(x,) / 0(xp).

Since all the internal computation is fixed absolute
precision fixed-point arithmetic, the ordering of the terms in
(3.2) is immaterial and no roundoff errors are committed. It
follows that the summation is performed with just a single sli
roundoff. Furthermore, if there is sufficient parallelism
available, then all of these terms can be computed
simultaneously with the result that the whole summation will
take no longer than a single sli arithmetic operation save for
the fixed-point additions in (3.2), which itself can be made
very efficient by use of a tree of Carry Save Adders. Even with
an entirely serial processor, the operation count would still be
bounded above by (1 + n/3) since the b-sequence is, typically,
the shortest of the three. If the sum (3.1) includes terms which
are of reciprocal form then, for these terms, * 1/210'0ao " is added

into c,, where agy = 1/6(x,). Again this can be computed

simultaneously with the various b-sequences. The remaining
case, in which all terms are in reciprocal form, can be similarly
shortened.

For the efficient and most accurate computation of such a
floating-point sum, a much more sophisticated ordering of the
terms would be required and, for a serial processor, n full
floating-point additions are necessary. It is clear that much of
the time-loss of individual sli arithmetic operations is recouped
in the case of extended sums.

Once we have seen the ease of computation of the
SumVector function, the following code for the scalar product
of two slivectors not only looks simple but is immediately
recognizable as highly efficient. It is self-explanatory.

Function ScalarProd(u, v: slivector; dim: byte): slisingle;
var
w: slivector;
i: byte;
begin
for i :=0 to dim do w[i] := sli(u[i],"*’,v{i]);
ScalarProd := SumVector(w,dim);
end;

At this point it would be easy to define the L, norm

function for a slivector by just SqRoot(ScalarProd(u,u,dim)).
Consider the operation counts for this definition. For a
sufficiently parallel computer, there is the computation of the
working slivector, w, which is one operation. This is followed
by the SumVector and then the SqRoot. A total of three
operation times is sufficient for the whole computation. On a
serial machine, the corresponding figures, with dim = n, are
n+1, for squaring the components, 1 + n/3 for the summation
and one more for the final square-root or 3 + 4n/3 arithmetic
operations in all. This completely robust computation requires
no scaling and separating of components as a safeguard against
overflow or underflow and must be compared with the very
involved routines such as Blue’s [1] which are necessary in the
floating-point environment.

This may, at first sight, seem a highly attractive procedure
to follow but there are great savings in efficiency that can be
made which in fact reduce the overall algorithm to a slightly
simplified form of the original SumVector function. The point
here is that yet again a redefinition of the starting point of the
c-sequence does everything. This derives from a similar
approach to that discussed for the sum of two squares. For the
simple case, we set

co=\/{1+b§'1+b§_2+..‘+bg’n} 3.3)
with corresponding modifications for the other cases. Since ¢,

is used as an argument of the natural logarithm function, the

21

square-root need not be taken at this point but the result of that
logarithm is shifted one place to the right. With the

corresponding simplifications in the calculation of the bg § itis

apparent that this operation can be achieved in a single sli
operation time for a parallel processor or, as with SumVector,
in 1 + n/3 such operation times for a serial machine.

Since, in the unlikely event that it would work, the
simplest of floating-point routines for this calculation requires
at the very least 2n+2 floating-point operations, it follows that
with the (almost certainly) achievable ratio of 6 : 1 between
basic sli and floating-point operation times, then the sli routine
will compute the euclidean norm of a vector more quickly than
could floating-point. The non-parallelizability of robust
algorithms for the floating-point computation makes the sli
system a sure winner in any parallel environment.

The other area in which the sli computing environment
differs significantly from the floating-point one is in the ease of
evaluation of polynomials, and the consequent inclusion of
procedures for this purpose. We have already described briefly
the evaluation of monomial terms. One of the important
considerations there is the relative magnitudes of the
coefficient and the argument, with the computation being
based on the larger one. Again this reduces to the appropriate
definition of ¢, The operation of evaluation of a polynomial

function is then achieved by the following very simple piece of
code which again is self-explanatory.

Function Poly(coeff: slivector; degree: byte; x: slisingle):
slisingle;
var

i: byte;

term: slivector;
begin

for i := 0 to degree do

term[i] := monomial(coeff[i],x,i);

Poly := SumVector(term,degree);

end;

On this occasion there is no easy way of abbreviating the
computation further and the implied 2 + 4n/3 operations for a
polynomial of degree n on a serial machine or 2 for a parallel
one are indeed correct. This still represents a considerable
saving in terms of the number of operations even by
comparison with Homer’s rule. Of course the operations will
themselves be slower but the savings indicated, combined with
the available simplicity of program structure, may well make
the eventual hardware implementation of symmetric level-
index arithmetic faster than floating-point for this operation.

4, Computational experience

The principal application we consider here is the computation
of the p-norm of a vector. As has been observed already, this is
of both practical and theoretical interest but more importantly,
for our present purposes, it provides an excellent example of a
piece of computation which is straightforward in the level-
index systems while being very difficult to perform efficiently
in floating-point arithmetic. The results demonstrate not only
the possible efficiency of computation with sli arithmetic but
also the accuracy delivered by sli routines which have used
some very large, or very small, numbers en route to finding a
moderately sized final result.

It is on this latter point that some of the critics of the level-
index system have focused in the mistaken belief that any

calculation which uses quantities which have little if any
relative precision cannot be meaningful. The fallacy of this
argument is demonstrated by the computation of the p-norms
of vectors for increasing values of p since in this case the limit
as p — oo is easily computed directly. It is just the eo-norm, or
supremum norm, which is obtained directly from the
MaxComp procedure for finding the llargestl component of a
vector. (This is the same procedure as was used within the
SumVector function.)

Three different p-norm function routines were written -
two with integer values of p and one for p a slisingle variable.
We concentrate here on the integer case, save to report that the
computation of the p-norm for nonintegral values of p was also
a completely reliable calculation irrespective of whether p was
small, moderate or very large.

Why two functions for integer p? The first is the obvious
simple routine, called IntNormP which is computed by the
following code

Function IntNormP(u: slivector; dim: byte; p: integer)
: slisingle;

var
i: byte;

begin
for i := 0 to dim do u[i] := SliInt(SliAbs(u[i]),’*’,p);
IntNormP := Root(SumVector(u,dim),p);

end;

Again it is clear that for a parallel machine the first stage could
all be done simultaneously reducing the overall operation to
just three "sliops". It is immediately apparent that for large
values of p the results of the powers in the for loop will easily
reach levels of overflow or underflow for vectors whose
components are of moderate size. In the case where all

components are in reciprocal form, they would all underflow to
zero to yield a meaningless zero result for the norm for large
values of p. As can be seen from the results in the tables below,
the sli system had no difficulty in computing accurate results.

The second function routine, IntPNorm, uses the same
approach as was described in Section 3 for the euclidean norm
and can potentially reduce the parallel processor version to just
one operation. In its software implementation it is only
marginally more efficient than the first of these. What is
important to observe in all of these results is that both functions
produce sequences of values for the p-norm which are
converging steadily to the correct limit. Furthermore, there is
no loss of accuracy as the value of p grows. All of the runs
were continued out to at least p = 1000 with no loss of
precision.

By this point, sums of quantities of the order of ¢(4.8) had
been performed and then their 1000th root taken. Such
numbers have decimal exponents of the order of 5000 - a long
way beyond the limits of any floating-point system. This is
achieved with the single length sli format and so only a 32-bit
word.

The tests were performed on randomly generated vectors
of dimension 21. Firstly with moderately large components,
uniformly distributed in the interval [—15 000, 15 000], then
with a mix of small and moderate components in [-2.5, 2.5]
and thirdly with all small components generated in the interval
[0,1]. The results for the two functions are tabulated in Tables
4.1(a) - (c) respectively. The values |IvIIp are obtained by

converting the values of IntNormP from sli to floating-point
form.

Dimension = 21

Tables 4.1
(a)

P Il
1 1.48277 E+05
2 3.75909 E+04
3 2.46956 E+04
4 2.03779 E+04
5 1.83394 E+04
6 1.71941 E+04
7 1.64779 E+04
8 1.59958 E+04
9 1.56535 E+04
10 1.54004 E+04
20 1.45017 E+04
30 1.42988 E+04
40 1.42160 E+04
50 1.41721 E+04
100 1.41024 E+04
150 1.40898 E+04
200 1.40868 E+04
300 1.40858 E+04
400 1.40857 E+04
500 1.40857 E+04
o 1.40857 E+04

Components in [=15 000, 15 000]

IntNormP IntPNorm
[3.907094 11 [3.907094 11
[3.856395]1 [3.8563951 1
[3.838960] 1 [3.838960] 1
[3.830635]1 [3.830635] 1
[3.825970] 1 [3.8259701] 1
[3.823081]1 [3.823081 11
[3.82115911 [3.821159]1
[3.8198111]1 [3.819811]1
[3.818825]1 [3.818825]1
[3.818080] 1 [3.818080] 1
[3.815316]1 [3.815316] 1
[3.814664 11 [3.814664] 1
[3.814395] 1 [3.814395] 1
[3.8142521]1 [3.814252]1
[3.814024]1 [3.814023]1
[3.813982]1 [3.813982]1
[3.813972]11 [3.813972]1
[3.81396911 [3.813969]1
[3.813968] 1 [3.813968]1
[3.813968]1 [3.813968] 1

[3.813968] 1

22

(b

©

Lo~ UNPAhWN= T

sl

Nelle RN No MU TN LSV S A

Components in [-2.5, 2.5]

vl
P

2.50065 E+01
6.27878 E+00
4.17182 E+00
3.48042 E+00
3.15608 E+00
2.97294 E+00
2.85693 E+00
2.77750 E+00
2.71998 E+00
2.67659 E+00
2.51267 E+00
2.47615 E+00
2.46510 E+00
2.46149 E+00
2.45959 E+00
2.45958 E+00
2.45958 E+00
2.45958 E+00
2.45958 E+00

2.45958 E+00

IntNormP

[3.156245] 1
[2.608229] 1
(235652171
[2.220863] 1
[2.130181] 1
[2.08576711
[2.048551]1
[2.021321]1
[2.000626] 1
[1984543]1
11
1
11
11
11
11
11
11
11

[1.899991]1

Small components in [0, 1]

Ilvllp

1.12437 E+01
2.80409 E+00
1.82533 E+00
1.49352 E+00
1.33366 E+00
1.24181 E+00
1.18314 E+00
1.14292 E+00
1.11395 E+00
1.09227 E+00
1.01336 E+00
9.95005 E-01
9.87711 E-01
9.84164 E-01
9.80091 E-01
9.79811 E-01
9.79786 E-01
9.79784 E-01
9.79784 E-01
9.79784 E-01
9.79784 E-01

9.79784 E-01

IntNormP

11
11
60176211
40113411
28792911
1
1
11
1
1
1

-

.015962
020396 1-

]
)
1
]
]
012365 |-
-
]
I
020421 }-

-

1
1
1
1
1
1
1
1

020423 |-
1020423 -1

[2.
[2.
[
[
[
(1.
[1
[1.
[1
[1.
[1.
[
[
[
[
[
[
[1.
E
[1.020423]-1

sl s s s s e e s e s e
o
—_
W
[
=N
~

[1.020423 1-1

23

IntPNorm

2356521
2.220863
2.139181
2.085767
2.048551

[3.
[2.
{
[
[
[
[
[2.
[2.
[
[
[1
[1
[1.
[1
[
[1899991
[1.

IntPNorm

287929
216571
168171

5. Conclusions

In this paper we have seen that the symmetric level-index
system of number representation and arithmetic can be
implemented in a tolerably efficient software package which
allows the inclusion of several special features. The Turbo
PASCAL language allows for easy storage of the
representation within a single 32-bit computer word which
preserves the natural ordering of the representing integers.

Many of the features which are desirable but difficult to
engineer within a floating-point system - such as the formation
of scalar products and computation of euclidean norms - are
reduced to just a very simple sli operation. Sometimes even to
just a single such arithmetic operation.

The ideas used there have been extended to the
computation of the p-norm of a vector which provides
convincing evidence of the ability of the new arithmetic to
deliver highly accurate results at the end of calculations which
have used numbers well outside the range of even double
precision (or even Turbo PASCAL’s extended 80-bit format).

The functions and procedures discussed here are available
as a Turbo PASCAL (Version 5.0) unit which may be obtained
from the author for further experimentation.

Acknowledgements
The author is pleased to acknowledge helpful discussions with
C.W.Clenshaw, D.W.Lozier and F.W.J.Olver in connection
with this work and with W.A Light who was responsible for
bringing the practical importance of the p-norm to my
attention. J.L.Buchanan was instrumental in teaching me some
of the features of Turbo PASCAL.

(Turbo PASCAL is a trade mark of Borland International Inc.)

24

REFERENCES
1] J.L.Blue, A portable FORTRAN program to find the
euclidean norm of a vector, ACM Trans Math Software 4
(1978) 15-23.

C.W.Clenshaw and F.W.].Olver, Beyond floating point,
J. ACM 31 (1984) 319-328.

C.W.Clenshaw and F.W.J.Olver, Level-index arithmetic
operations, SIAM J Num Anal 24 (1987) 470-485.

C.W.Clenshaw, F.W.J.Olver and P.R.Turner, Level-
index arithmetic: An introductory survey, Proc. Numerical
Analysis Summer School, Lancaster, 1987, Springer
Verlag Lecture Notes in Mathematics, to appear, 1989.

C.W.Clenshaw and P.R.Turner, The symmetric level-
index system, IMA J Num Anal 8 (1988) 517-526.

C.W.Clenshaw and P.R.Turner, Root squaring using
level-index arithmetic, to appear.

F.W.J.Olver and P.R.Turner, Implementation of level-
index arithmetic using partial table look-up, Proc.
ARITHS8, (M.J.Irwin and R.Stefanelli, eds.) IEEE
Computer Society, 1987, 144-147.

M.1.D.Powell, Radial basis functions for multivariable
interpolation: A review, Algorithms for Approximation
143 - 167 (M.G.Cox and J.C.Mason, eds.) Oxford, 1987.

P.R.Turner, Towards a fast implementation of level-
index arithmetic, Bull. IMA 22 (1986) 188-191.

P.R.Turmer, Algorithms for the elementary functions in
level-index arithmetic, Proc. Symposium on Scientific
Software and Systems, RMCS Shrivenham, 1988
(M.G.Cox and J.C.Mason, eds.), to appear.

[2]
[31
41

(51
(6]
(71

{8]

9]
[10]

