Optimal group distribution in carry-skip adders

Silvio Turrini

Digital Equipment Corporation Western Research Laboratory
100 Hamilton Avenue, Palo Alto, CA 94301

Abstract

Adders are very often in the critical path of a computer, so it is very
important that their performance will not limit the cycle time of the
machine. In VLSI applications, area and power are aiso important
factors which must be taken into account in the design of a fast adder.
One choice is the carry-skip adder, which because of its great topological
regularity and layout simplicity is considered a good compromise in
terms of area and performance. Some general rules have been suggested
for its design, but they tend to overlook many important implementation
details and cannot be applied to carry-skip adders with more than two
levels of carry-skip or with different delays in the carry paths.

The result is a n ptimal distribution of groups and sub-groups
where the carry-skip circuits are placed, degrading the worst case delay
of the adder. In this paper a new algorithm for determining the optimal
distribution with no restriction on the number of skip levels is presented.
Some results and lusions are also pr d in the realization of
such an adder in bipolar ECL technology.

Introduction

The addition of two binary numbers A and B can be ob-
tained by means of the relations :

co=0
Si = Ai xor Bi xor Ci
Ci+l = Gi or (Pi and Ci)
where
Si [Sum]
Pi = Ai xor Bi [Propagate signal]
Gi = Ai and Bi [Generate signal]
Ci+l [Carry bit i+1]

and

i = bit position starting with the
LSB of the adder

In a simple carry-ripple adder the worst case delay is
proportional to its size, because if a carry is generated in the
LSB it will ripple through the entire structure.

If we divide the total number of bits into groups, the fol-
lowing rules apply to each group :

o If each Ai # Bi in a group, then we do not need to
compute the new value of Ci+1 for that block; the
carry-in of the block can be propagated directly to the
next block.

oIf Ai = Bi = 1 for some i in the group, a carry is

96

enerated which may be propagated up to the output of
at group.
o If Ai = Bi = 0, a carry, will not be propagated by that
bit location.

The basic idea of a carry-skip adder is to detect if in each
group all Ai # Bi and enable the block’s carry-in to skip the
block when this happens. In general a block-skip delay can
be different from the delay due to the propagation of a carry
to the next bit position.

In the case of a one-level skip adder, we need to generate
for each group a signal Skipl, which is simply the logic and
of all Pi in that block. Skipl will enable the skip cell to
propagate the group’s carry-in directly to the input of the next

group.
Skipl

Pn and Pn-1 and ... and P1

n number of bits in the group

The total adder delay will be the worst case carry propaga-
tion delay plus the delay of producing the last Sum bit.

The problem, given the skip and ripple delays, is to find
the block sizes which minimize the worst case delay. The
concept can be applied recursively to an n-level carry-skip
adder, in order to obtain an (n+1)-level carry-skip adder with
the skip cells controlled by the signals :

Skip2 = Skipln and ... and Skipll
and ... and
and ... and

Skipm = Skipmn and ... and Skipml

where Skipij is the jth signal at
level i

Many papers on the choice of skip groups have been writ-
ten, but all of them treat the problem without considering
some important details. They restrict it, sometimes im-
plicitly, to a particular implementation and to the simpler
cases, such as a one or two level carry-skip adders. In the
paper by Lehman and Burla! the best configuration is found
for groups of equal size; Majerski? also studied the problem,
and Guyot, Hochet and Muller® reduced the optimal group
distribution to the solution of a geometrical problem. In the
paper by Oklobdzija* and Barnes’ a method is described to
determine the optimum division of a carry chain. Examples
for one and two levels of carry-skip are also described, but
the method cannot be applied if the delays of the different
cells do not satisfy certain limitations. The algorithm
proposed here overcomes the following limitations of pre-
vious methods :

» Asymmetric distributions can also be generated. Some
of the papers, consider only symmetric distributions.

o The possibility of a carry-in to the low order bit of the
adder is taken into account, allowing efficient perfor-
mance of two’s complement arithmetic.

« Different delays can be assigned to the ripple cells and
to the skip cells at each level of carry-skip. No matter
which technology we consider, the node at the end of a
block, where two or more carry paths merge, has a
higher capacitance than the intermediate nodes in the
carry chain. This means that the delay associated with
the cells driving that node is higher in technologies
such as CMOS, where gates must be resized to oE-
timize performance, or in technologies such as ECL,
the power must be increased due to the different
electrical situation.

o There is no limitation on the number of carry-skip
levels. It is possible to improve adderl:performance by
using three or more skip-levels. For example in
CMOS, extending the number of carry-skip levels to
three and even four has small cost in terms of area and
can lower the total adder delay by one or two gate
delays in the case of a 32-bit data path. The application
of this methodology to ECL yields an adder that is not
only very efficient in terms of silicon area and current
consumption, but the total delay also can be very low
and comparable to the most complex and expensive
adders such as carry-look ahead adders, conditional

sum adders and Ling addersS.
Cells which propagate the carry faster than necessary

are identified so that the excess speed can
eliminated or taken into account during the optimiza-
tion process. This is very useful in ECL where the

delay of a gate is a function of the power dissipated by
that gate.

Worst case carry delay

Let us define the order of a carry-skip adder as the number
of levels of its carry-skip circuitry and a block as any dis-
tribution of bits of the adder grouped together and bypassed
by a skip cell. A block also has an order, which depends on
the level of the carry-skip circuitry connected to it. In the
example of Figure 1 the block which contains bits b3...b8 has
order two, equal to the highest level of the skip cell placed
between its input and output.

Depending on the operands provided there are many carry
paths with different propagation delays. We are interested in
the longest of them, because it will be the worst case carry
propagation delay of the adder. In general the worst case
path is composed of three basic subpaths :

e A carry is generated in some block and propagates to
the output of that block in a time IproBortiona% to the
size of the block. Let us call this delay Dg.

e From the output of the block where it has been
Eenerateq, the ¢ skiBs a certain number of other

locks with a total delay Ds.

e Finally it ends in a block after rippling through a cer-
tain number of bits with a delay De, which is propor-
tional to the size of the block. “Because we are inter-
ested in the worst case delay only the slowest carry
path will be considered.

D_The total worst case delay, Dt will be the sum of the three
i:

Dt Dg + Ds + De

In the example of Figure 1 a possible worst case path could
be :

bl-->b2-->b3-->S1-->b6-->b7-->b8

where a carry is generated in b1 and propagates up to b8
through ripple (bi) and skip (Si) cells.

97

But it could be :
b0-->S1-->b3-->81-->b6-->b7-->b8

if the delay in S1 is higher than the sum of the ripple
delays through b1 and b2.

In order to design the optimum adder, the right distribution
of blocks as well as their internal arrangement which min-
imizes this time, must be found for all possible combinations
of inputs.

To find an algorithm which, given the number of bits of
the adder and the associated delays of all the different cells,
optimizes the distribution, is a hard problem. It is even har-
der if we want to overcome the simplifying assumption that
the delays in all the possible carry paths are the same.

The problem is simplified if instead of providing the
adder’s number of bits and finding the optimal distribution
with the associated worst case carry delay, we provide the
total worst case carry delay and we find the optimal distribu-
tion for that delay with the associated total number of bits.
By varying the provided worst case delay, the algorithm will
generate optimal distributions which will be characterized by
a different number of bits. The one with a total number of
bits equal to or larger than the value requested by the design
will be chosen. We will start this process with a minimum
delay, which is the one required for just a single group at the
assigned carry-skip level to operate correctly, and we will
proceed until the appropriate distribution is generated.

In general we might obtain distributions which will not
necessarily have the usual number of bits found in adders (
16, 32, 64 etc.), but might be higher. This simply means that
for the given worst case carry delay, the number we obtain
represents the maximum number of bits that can fit the op-
timal distribution generated. We can eliminate some con-
figurations of bits in order to obtain the desired number, with-
out affecting the worst case delay. The elimination can be
done according to some simple rules that will be given later.

Basic observations on the algorithm

The basic idea is to assign to each of the adder’s blocks of
bits a pair of delays corresponding to a carry generation and a
carry ending in that block. The delay will be function of the
block’s position along the carry path. Each block, according
to the constraints imposed by the assigned delays, will con-
tain a maximum number of bits. The combination of the
delays introduced by all the blocks will be equal to the given
maximum carry propagation delay allowed to the adder.

Starting with a given worst case carry delay for the adder,
we will divide it into time intervals according to the position
of the block along the carry path, and we will generate the
combination with the maximum number of bits. During the
generation process, which we will call expansion of the
block, the way that bits will be grouped together will be a
function of the carry-skip level assigned to the block, or
order of the block. If we are dealing with a 0-order block we
can generate the maximum possible number of bits directly.
If the order is higher we can consider the block as if it were a
lower order carry-skip adder itself and we can recursively
apply the same procedure to the block. So, for a given a
carry-skip level higher than the trivial case of zero, the algo-
rithm will generate a tree whose nodes correspond to blocks
and whose levels correspond to carry-skip levels. The leaves
of this tree will be the bits of the adder, and the roots are the
blocks generated by the division of the total adder delay into
time intervals during the initial phase.

The tree structure will respect the rule that from a parent
block only the most prolific descendents will be generated.
These are those which will be able to generate the largest
number of bits. The paths which connect the roots to the
largest number of leaves will form the final optimal distribu-
tion.

Delays :

- all bi have the same ripple delay

- 81, S2 delay for propagating carry through skip cell
- Skip1 = delay for generation of Skip1 signal

- Skip2 = delay for generation of Skip2 signal

Cin Cout
b0 b1 b2 b3 b4 b5 b6 b7 b8
S$1 St S1
Skip1 Skip1 Skip1

S2

bi = adder bits

S1 = skip cells (level 1} T

S2 = skip cells (level 2 Skip2

Figure 1: A carry-skip arrangement example

In order to describe the behavior of a block we introduce a
pair of delays associated with it. The first represents the
maximum delay allowed to a carry that is generated inside the
block and ripples to its output. The second represents the
maximum delay allowed to a carry that has been generated in
some previous block and dies in this one. By means of these
two values we can assign different constraints to a block
depending on its position along the carry path. As we
proceed along the carry path going through blocks, the first
number in the delay pair i will increase, because more time
will be allowed in the case of a carry generation, while the
second number , j, will decrease by the same amount, be-
cause a carry which enters the block has a delay which in-
creases as we get closer to the carry out of the adder. We
also want to use profitably the time spent in the generation of
the highest level Skip signal by using this time in generating
blocks at a lower level where the corresponding Skip signals
are ready. So the initial part of the list of blocks will include
some lower-order blocks to take care of this.

General algorithm
The algorithm can be divided into two steps :
e Partitioning and delay assignment. Starting with the
total ¢ delay, the set of constraints at the highest

level will be computed and assigned to corresponding
blocks.

o Building the tree. The whole tree will be generated,
starting with the initial constraint assignments and
working down to the lowest level. The paths which
connect the blocks generated in the previous step to the
largest possible number of bits that can be generated
from them will define the optimal structure.

Partitioning and delay assignment
In this section and in the rest of the paper, we assume that
a carry propagates from left to right : the leftmost bit is the
adder’s LSB. The partitioning and the assignment of the
delays to each block is a two-step process :
Iststep : At any carry skip level desired, the basic
rule which determines the block genera-
tion is that the delay associated with a
carry generation will be the same as the
delay that a carry would have if it skipped

that block. For the first block the situa-
tion is slightly different, because the Skip
signal must be ready before we can
profitably use the skip circuitry. The
delay associated with carries that end in
the block is simply the difference be-
tween the total carry delay and the delay
at the output of the previous block.

In the second step we will compute other
delay tEalrs of decreasing level, starting
from the delays associated with the first
block generated in the first step, down to
the minimum possible delay of a carry
gfnerated in a single bit. The i value in

e delay pair is computed by adding the
maximum of the Gi and Pi delay to the
delay of the skip cell at that level. The
chanfge from the partitions generated at
the first step is that the new ones will
have a lower carry-skip level. As said
before, the lower level is because the cor-
responding Skip signal is already set
and the proper skip-circuitry can be used.

2nd step :

Building the tree
The final list will be visited and action taken according to
the value of the skip-level of the partition :

If skip level = 0: The right number of bits satisfying the
delays associated with the partition must
be generated. This can be accomplished
once we know the delays for ¢

ropagation and generation at this level.
f a carry ends in this block, the max-
imum number of bits will be determined
by dividing the given delay b){_ the carry
ripple time and adding one. This is be-
cause, due to the skip circuitry, a carr
can propagate up to the next to last bit,
otherwise the skip-path would have been
taken. The delay allowed to a ¢
generation or kill within a group of bits is
express by :

D <= min(di, d3j)

98

If skip level >= 0 :

where

max total group
delay for a carry
generation or kill

max delay when a.
carry is generated
in the block

max delay for a
carry to ripple

in the block
before being killed

For_example assume that the delay as-
sociated with Pi and Gi signals is_one
unit delay. Then for the delay pair {3,4}
we can generate two bits, because in this
case the first number in the pair, that is
three, is the tighter constraint on the max-
imum number of bits that satisfies the
relation above. In fact it takes :

1 (Pi) + 2 (rippling) =
= 3 unit delays

for a ¢ to be generated and to ripple
through the two bits. Now assume the
delay pair {4,2} and the same assump-
tions about the delays. Then both values
would have limited to three the total
number of bits that can be generated from
this partition. This is because it takes :

1 (Pi) + 3 (rippling) =
= 4 unit delays

for a carry to be generated in the first bit
and to ripple through the 3 bits, but only
2 units for entering the block and rippling
up to the next to last bit.

This algorithm can be recursively a{)plied
to a new list of partitions one level lower,
which is generated from the given dela
pair. Only the partition which will
enerate the largest number of bits will
e chosen as the best candidate. With the
list of possible partitions are associated
delays which vary from the given delay
to the minimum possible amount, that is
the delay of just one bit. During this
evaluation delays between subsequent
blocks will differ by the delay of a_skip
cell one level down. For example, if we
assumed for simplicity that the delays of
all the cells involved at all levels were
egual to 1 unit delay and we started with
{4,5} at level 2, the possible choices
would be :

{2,5} {3,4}) (4,3}
{3,5} {4,4}

(4,5}

The value two in the carry generation
delay has been established considering

that the delay associated with the carry
prolgagation of just one bit is the the delay
of Pi generation + the delgy of n;t)t;l)hng a
carry, ie. 1 + 1 = 2. Notice that the
delays differ from the previous partition
by one unit, but while the delays cor-
responding to the c generation in-
crease, those corresponding to a carry en-
ding in the block decrease. The set con-
taining the delay pairs which will
§enerate the largest number of bits will
e chosen as the best candidate. In the
case of two sets which generate the same
number of bits but differ in the number of
elements, various strategies are possible.
In the program developed the set with the
lower number of elements is chosen.
This is because that partition will
generate a smaller number of bits or
groups of bits. This means that the fan-in
of the gates involved in the Skip signals’
generation will be lower.
When all the original partitions have
generated the entire tree the process will
stop and the whole structure, specifyin
the organization of the bits at each level,
is printed.

This has been a general description of the algorithm with
no differentiation among delays which belong to partitions at
different places and levels along the list of possible can-
didates. In actual situations the delays, which correspond to a
bit or group at the end of a list can be higher to take care of
the different electrical situation where the different paths
merge. The same applies to the delays of the skip cells.
These differences can be taken into account without changing
the basic behavior of the algorithm.

During the process of finding the optimal distribution with
the required total number of bits, we provide increasing worst
case carry delays which generate larger and larger final dis-
tributions. The increment that is added to the worst case
carry delay at each step must be such that the new set of
delay pairs will generate distributions with at least one more
bit in them. This increment, called adder efficiency in-
cremental delay, or AEID, is defined as the minimum in-
cremental delay which, if added to the worst case carry
propagation delay, would generate a new distribution with at
least one more bit.

One observation about the efficiency of this algorithm is
that it has an exponential behavior when building the tree.
However in practical cases, up to 5 or 6 levels and 128 bits,
its performance is very good.

Printing groups

An example

As an example let us consider a 2-level 32-bit carry-skip
adder, where the carry ripple delay, Gi and Pi signal delays,
skip cell delays and the delays associated with all the Skip
signals are all equal to a unit delay. Because we want a
two-level carry-skip adder, we have to generate the signals
Skipl and Skip2. Here is a table that shows the delays
associated with each signal, starting from time zero.

signal total delay
Gi, Pi 1
Skipl 2
Skip2 3

and it takes 1 unit delay to skip
a block at both levels

For representing the delays and the level, we will used the
notation {ij,k} , where i and j will represent the delays
associated with the carry generation and carry ending, while
k will represent the level of the partition. Assuming we start
with a total adder delay of 8, the first list will be :

(4,5,2} {5,4,2} {6,3,2} {7,2,2} {8,1,2})

The 4 value in the first partition represents the delay that this
group would introduce in the case a carry were generated.
The value of 4 comes from the consideration that it takes
three units to generate the signal Skip2, which enables the
first block to skip the carry, plus one unit, that is the delay for
actually skipping the block.

The value 5 in the first triple represents the maximum
allowed delay for carries that end in this block. It is com-
puted considering that the carry coming from the previous
block, which will be part of the list generated at the second
step, must have a delay which will differ by one skip cell
delay from the 4 value, i.e. one unit. This is because we
always want the delays in the carry-ripple and carry-skip
paths be the same to maximize the number of bits in each
partition. So if we subtract from the total adder delay of eight
the value generated by the previous block, that is three, we
obtain five units.

The other values are generated considering that at each
step along the list, i is increased by one carry skip delay at
that level and j must decrease by the same amount, because
as we proceed along the list, one more skip cell is added. At
the second step we will add new partitions at a lower level
and the new list will be :

{2,8,0} {3,6,1} {4,5,2}) {5,4,2} {6,3,2}
{7,2,2} {8,1,2}

The value of two in the first block is the minimum carry
delay generated assuming that the minimum block size is one.
In this case the delay is equal to two units because we have
one delay unit for Gi or Pi and one delay unit for the carry to
ripple through one bit. The maximum carry kill delay is
equal to the given worst case carry propagation delay.

In the second block, i is equal to three units and j is com-
puted by subtracting the maximum delay at the output of the
previous block from the total carry delay, that is :

8 -2

6 units and k = 1

Now we have to visit each group of the list and either
calculate the maximum number of bits, or generate a new list
of delays for a lower level partition and apply the algorithm
recursively. For the first group there is no choice since we
can only generate a single bit. For the second partition, we
can have the two possibilities :

12 or 2
which represent two groups of one and two bits respectively
with a skip cell at level 1 bypassing each group, or a single
group of two bits with no bypass circuitry. Clearly the first
choice generates more bits and therefore it will be selected as
the best candidate. The same criteria can be applied to the
rest of the list and the table in Figure 2 shows the expansion
of two of the groups of the list. Each row displays the sets
which can be generated starting from the given partition at
the highest level, down to level zero. The groups which
generate the largest number of bits will be chosen.
The best distribution, which satisfies the requirements with
34 bits, is shown in Figure 3.
In this example there are a few observations to make :
e The total number of bits exceeds by two bits the re-
quired adder size. The location of the bits to be

eliminated can be based on ease of implementation,
such as lowering the maximum fan-in of the gates or
lowering the carry-skip level of some block. In our
example the maximum fan-in is three and will not
change by the elimination of only two bits, because
there are six groups of three bits. If the last bit in the
last group is eliminated however, we can eliminate a
2-level carry bypass. The location for the elimination
of the second bit is arbitrary. In this example the last
bit in the next to last group has been chosen. So one
ssible 32-bit distribution is the one shown in the
igure 4.
¢ Eliminating some bits does not change the worst case
carry propagation delay unless the elimination lowers
both dgla s associated with the block to which the bits
belong. As will be clarified in the next section, if a test
on the total number of bits generated is included in the
algorithm and at each step the right AEID is always
provided, by construction the previous generated dis-
tribution must have had a number of bits smaller than
the one requested. In our example it can easily be
proved that the AEID is constant at each step and is
equal to the delay of the skip cell at the higher level, 1
unit in our case.

Figure 5 shows another example, a 4-level 56-bit carry-
skip adder with the same assumptions about the cells’ delays
as in the 32-bit example. In the diagram shown, the carry’s
worst case delay is 8 gate delays, the same as in the previous
example.

Enhancements : AEID and control of the delay of each bit

As defined in section 2, the AEID is the minimum delay
that the worst case carry propagation delay must be incre-
mented by, in order to generate a new distribution with at
least one more bit. This assures that in the process of deter-
mining the distribution with the right number of bits, there
will always be a perfect matching between number of bits and
the worst case carry propagation delay that they generate and
no excess time will be wasted in some bit or group of bits.
The AEID is implemented very simply. Every time a block is
generated we compare the delay that this block will actually
generate with the limits defined by the delay pair. The dif-
ference is compared with the previous AEID and saved if it is
smaller. Also, the difference between the actual delay and
the maximum allowed for the configuration can be saved
with the node representing the partition. In this way we can
keep track of the excess performance of some bits and adjust
the speed of the cells involved by lowering the power, in the
case of an ECL implementation, or resizing the gates in the
path, in the case of a CMOS design.

Time complexity evaluation

Because in the general case too many variables are present,
it is very difficult to study the worst case carry propagation
delay of the optimal distribution generated by this algorithm
and find out the mathematical relation of the worst case carry
delay as a function of the other parameters. Even in the
simplest case, where all the delays of the different cells are
the same, the problem is complicated. As a guide line and for
the simpler case of all signal delays equal to a unit delay,
Table 1 shows the maximum number of bits that the optimal
distribution generated by this algorithm can pack, for some
interesting worst case carry propagation delays and carry-skip
levels. Because usually the number of bits is a starting point
in a design, this table can give us a rough estimate either of
the speed of the adder, if we provide the carry-skip level and
the number of bits, or the carry-skip level needed for the
given number of bits and speed of the adder. In real cases the
situation is different and the appropriate delays for the dif-
ferent cells and signals generation must be provided. In
CMOS designs using a Manchester carry-chain, for instance,

level partition

2 {4,5,2}

{2,5,1} {3,4,1} {4,3,1}

partition

{5,4,2}

{2,4,1}) {3,3,1} {4,2,1} {5,1,1}

1 {3,5,1} {4,4,1} {3,4,1} {4,3,1} {4,4,1}
{4,5,1} {4,4,1} {5,3,1}
{5,4,1}
(1 2 3) ==> 6 bits (2 32 1) ==> 8 bits
0 (2 3) ==> 5 bits (3 3 2) ==> 8 bits
(3) ==> 3 bits (4 3) ==> 7 bits
(4) ==> 4 bits
the groups (1 2 3) and (3 3 2) will be chosen
Figure 2: Expansion of 2 partitions
{3 3 {3 3
Figure 3: A 2-level 34-bit carry-skip adder
1 1 1 1
J L —J J

Figure 4: A 2-level 32-bit carry-skip adder

even the ripple delay depends on the number of pass-
transistors in the group and must be modelled accordingly in
the implementation of the algorithm,

Table 2 shows another situation where the delay of Pi, Gi
and Skip signals is still 1 unit, but the delay introduced by all
the skip cells and the ripple cells at the end of a group is 2
units. One interesting observation is that higher carry-skip
levels do not always generate optimal distributions with a
higher number of bits. For the given combination of delays
and a worst case carry propagation delay of 11 gate delays,
for instance, we have an optimal distribution with 34 bits for
a 5-level carry-skip adder and a 38 bit configuration in the
4-level case. The reason of this apparent contradiction is that
the efficiency of a group in generating bits is a function of the
timing constraints provided. The higher the order of a block,

101

the higher the minimum delay allowed to a carry generation
or propagation in that block must be, if we want an efficient
expansion which generates large numbers of bits. In the case
of the 5-level implementation, the timing constraints provided
to the highest order blocks take into account the additional
time spent in the generation of the Skip S signal and allow
less time to be spent in the blocks. The conclusion is that
there is a limit to the carry-skip level of an adder and this is a
function of the total number of bits; beyond that limit the
performance decreases.

An ECL 32-bit carry-skip adder implementation

During the adder development at WRL speed was not the
only concern; its area and power consumption were even
more important. This is because WRL is interested in VLSI

T

O O O O—
O 3
O —O
Figure 5: A 4-level 56-bit carry-skip adder
adder/igure | adder/Pigen adder/Pigen agder/group2 .
adder/ripple! adderhipple| ;}ip‘ Idet fipple| addec/ipple §§dp1 adder/ipple adderripple2 oo
Cexor X0t Cexor Cexor
Z adder/or2 % adder/or2 adder/
Cio CH

1] S
addovsu

Figure 6: A portion of the adder’s layout using ECL technology

Worst case carry delay (in units)
617|819 10]11]fI12
Slevel| /[36|62{104| 168 | 268 | 415
4level | 20|35 |57 | 91| 141|218} 299
3level | 19|31 | 48| 74101137 | 185
2level | 16 |25|34] 46| 62| 78| 98
lTlevel | 11 [1519] 24 29| 35| 41

Table 1: Maximum number of bits

Worst case carry delay (in units)

1011112113114 15 | 16
Slevel {23134 |47173|94 (121|157
dlevel {23 (38|46 |62{77] 102|117
3level |23130|39|50{59| 76| 89
2level 1912529 |38{44| 53| 62
llevel | 14| 17202427} 31| 35

Table 2: Maximum number of bits

applications where an adder is only a very small part of the
chip. With a 2-level carry-skip adder, all the requirements
have been fulfilled.

102

The process used is good in achieving circuit density, but
bad for the transistor performance and can be roughly charac-
terized by :

¢ The process is double poly.

¢ 3 um emitter minimum npn transistor.

3 metal layers, but 1 dedicated totally to power supply.
¢ 4 um pitch for interconnection metal layers.

* Transistor performance, characterized by a T, of 35 ps.

The distribution of Figure 4 has been used, because it
turned out that this was the most convenient choice in terms
of total power budget for the implementation of the skip and
ripple cells we used.

From the layout and spice simulations, the results are :

e Area of 0.3 x 2.1 mm, voltage reference generators
included.

* Worst case adder delay of about 1.7 ns.

o Power consumption of about 0.6 Watts using a power
supply voltage of -5.2 V.

Figure 6 shows a partial layout of the adder.

The speed of this adder is comparable to the speed achiev-
able with more complex implementations.

The reason why this adder is so fast, although its total
delay is 8 gate delays + the delay of the last xor operation,
compared to three gate delays for a Ling adder, is because the
gate delay in the two implementations is very different. In
the Ling adder, the loading conditions and the total number of
gates limit the speed of each gate. In a Ling adder almost all
the gates are in the critical path and all must be powered up to

increase the performance of the adder. In the carry-skip ad-
der the number of gates is lower compared to a Ling adder by
a factor of at least three and the load at each gate is very low.
Moreover, only a few gates need to be powered up in order to
improve the overall performance.

Thus the power consumption and the chip area are many
times lower in the carry-skip case for comparable perfor-
mance.

Finally, the area of a Ling adder is so large that it is dif-
ficult to imagine VLSI applications, such as single-chip
CPUs or FPUs, where it would be appropriate.

Spice simulations at WRL also indicate that with better
transistor performance and slightly higher power consump-
tion (still under a Watt) a sub-nanosecond delay is achiev-
able.

Conclusion

We have introduced a new technique for designing fast
and efficient multi-level carry-skip adders. The program
developed at WRL, which implements this algorithm,
generates the optimal distribution in less than a second of
VAX 785 CPU time, even for configurations with 128 bits
and 4 or more carry-skip levels. It also computes additional
information regarding the delay of each individual bit and the
group partition of the adder. This is very helpful during the
process of adjusting the power in ECL designs, or in compar-
ing design trade-offs during the process of sizing the gates in
MOS implementations. Our experience with a real design
has proved that carry-skip adders are very fast and efficient.

Acknowledgements

Jeremy Dion, Norm Jouppi and Mary Jo Doherty provided
valuable comments on an early draft of this paper.

103

References

Lehman M., Burla N, ‘‘Skip techniques for high-
speed carry propagation in binary arithmetic units”’,
IRE Transaction on Electronic Computers,Dec. 1961.

Majerski S., “‘On determination of optimal distribu-
tion of carry skips in adders’’, IEEE Transactions on
Computers,Vol. EC-16 February 1967.

Guyot Alain, Hochet Bertrand, and Muller Jean-
Michel, ““A Way to Build Efficient Carry-Skip
Adders’’, IEEE Transactions on Computers,Vol.
C-36No. 10 October 1987, pp. 1144-1151.

Oklobdzija Vojin G. and Barnes Earl R., ‘‘Some op-
timal schemes for ALU implementation in VLSI
technology’’, Proceedings 7th Symposium on Com-
puter Arithmetic, June 1985, pp. 2-8.

Barnes Earl R. and Oklobdzija Vojin G., ‘‘New Mul-
tilevel Scheme for Fast Carry-Skip Addition’’, IBM
Technical Disclosure Bulletin,Vol. 27,April 1985.

Ling H., ‘‘High-speed binary adder’’, IBM Journal of
Research and Development,Vol. 25 May 1981.

