
1220 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Energy-Efficient Design Methodologies:
High-Performance VLSI Adders

Bart R. Zeydel, Member, IEEE, Dursun Baran, Student Member, IEEE, and Vojin G. Oklobdzija, Fellow, IEEE

Abstract—Energy-efficient design requires exploration of avail-
able algorithms, recurrence structures, energy and wire tradeoffs,
circuit design techniques, circuit sizing and system constraints.
In this paper, methodology for energy-efficient design applied to
64-bit adders implemented with static CMOS, dynamic CMOS
and CMOS compound domino logic families, is presented. We
also examined 65 nm, 45 nm, 32 nm, and 22 nm technology nodes
to explore the applicability of the results in deep submicron
technologies. By applying energy-delay tradeoffs on various levels,
we developed adder topology yielding up to 20% performance
improvement and 4.5 energy reduction over existing designs.

Index Terms—Arithmetic and logic structures, computer arith-
metic, energy-efficient design, high-speed arithmetic, low-power
design, VLSI.

I. INTRODUCTION

A DVANCES in CMOS technology have led to a renewed
interest in the design of basic functional units for digital

systems. As technology scaling no longer achieves constant
power density, the energy-efficiency of functional units is of
increasing importance to system designers. Of these functional
units, the adder is a basic block to apply the energy-efficient
design methodologies. Parallel prefix adders have been im-
plemented with different algorithms and circuits techniques
under different constraints [13]. This wide implementation
space makes the adders a good example study to explore the
design methodologies. In the rest of the paper, energy and delay
tradeoffs for the adders will be presented to give architectural
insights to circuit designers about the possible energy saving
techniques that will be applicable to larger class of prefix
computation algorithms.

For over half a century, changing technology and operating
constraints have necessitated the refinement of adder imple-
mentations to obtain improvements in performance [1]–[13].
Recently, energy [14] has been introduced into this analysis,
making profound changes of the design exploration process.
In early integrated circuits, the primary constraint was area,
which led to the development of several simple schemes, such
as carry-skip, which improves the speed of addition while
maintaining low gate-count [6], [8]. As technology scaling

Manuscript received November 05, 2009; revised March 12, 2010; accepted
March 22, 2010. Current version published June 09, 2010. This paper was ap-
proved by Associate Editor Stefan Rusu. This work was supported in part by
SRC Research Grant 2009-HJ-1836, California MICRO, Intel Corporation, and
IBM Corporation.

B. R. Zeydel is with Plato Networks Inc., Santa Clara, CA 95051 USA
(e-mail: bart@acsel-lab.com).

D. Baran and V. G. Oklobdzija are with the Erik Jonsson School of Engi-
neering and Computer Science, University of Texas at Dallas, Richardson, TX
75080 USA (e-mail: dursun@acsel-lab.com, vojin@acsel-lab.com).

Digital Object Identifier 10.1109/JSSC.2010.2048730

continued, allowing for more logic gates per chip, complex
parallel prefix schemes, yielding fast adder designs became
viable [9]–[13]. In modern CMOS technologies, transistor
sizing has been used to find the optimal tradeoff between speed
and energy consumption of an adder [15]–[18]. In this envi-
ronment, implementations must be compared by optimizing
the circuit sizing for speed under energy, output load, input
size, and performance constraints [15], [16]. The energy-delay
tradeoff that exists for each of these constraints has blurred
the comparison picture requiring complex analysis before a
distinction can be made [15].

With each new technology generation, the gap between ad-
dition algorithms and energy-efficient realizations has grown.
Guidance for energy-efficient addition algorithm selection has
been nonexistent and only recently designs were compared
using more than a single implementation point [15]. Further
adding to the problem are the reduced benefits obtained from
technology scaling. Supply and threshold voltages can no
longer be reduced at the same rates as in previous technologies
and static power dissipation from leakage continues to grow.
Thus, improvements in energy efficiency must come from
either restructuring the adder, optimally sizing transistors, or
through the use of new devices.

The intent of this paper to provide a list of energy-efficient
circuit techniques that will be applicable to any prefix com-
putation algorithms. First, the adder topologies are given to
familiarize the reader to the adder circuits. Then, the leading
addition recurrence algorithms are explored along with the
best published realizations of these algorithms to identify
favorable characteristics of each. The paper is organized as
follows. Section II presents the adder topologies and Section III
examines Weinberger’s recurrence for addition and attempts
to clarify the presentation of the recurrence examined by
Ling. Section IV presents energy-efficient methodology on
VLSI adder realizations in modern CMOS technologies. In
Section V, three adder realizations created from the method-
ology in Section IV are presented. Section VI presents the
results of technology characterization across 65 nm, 45 nm,
32 nm, and 22 nm technology nodes. Section VII presents an
energy-delay space comparison of the proposed adders to the
best published designs. Section VIII concludes the paper.

II. ADDER CIRCUIT TOPOLOGIES

In this paper, the adder circuits are modeled using the topolo-
gies defined below. The main purpose is to provide structural de-
tails about the adder designs for possible energy optimizations.

1) Logic Depth (LD): The maximum number of logic stages
from output to inputs. In this paper, each logic gate is

0018-9200/$26.00 © 2010 IEEE

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1221

Fig. 1. Original presentation of Weinberger’s Recurrence [1].

counted as a stage for fully static implementations. How-
ever, in compound designs, the dynamic gate and the fol-
lowing static gate are counted as one stage. For dynamic
designs, some authors define a logic stage by counting the
dynamic gate and the following static gate separately [34].

2) Prefix (P): The number of bits combined at each logic stage
as defined above. For example, the two-input dynamic gate
and the following inverter is defined as a prefix-2 stage for
domino designs. The two-input dynamic gate and the fol-
lowing two-input static gate is defined as a prefix-4 stage
for compound domino designs. This definition is more con-
venient with the definition of the stage used in this paper.

3) Fan-out (F):The maximum number of logical branching at
any stage of the digital block.

4) Wiring Complexity (WC): For adders, the maximum
number of wire tracks passing through the bit pitch at
any logic stage is used as a rough estimate for the wiring
complexity.

Prefix adders are consisting of two blocks, namely, sum
and carry blocks. The topologies are reported for the crit-
ical block, that is, the carry block for adders. For example,
the carry block of the static 64-bit Kogge-Stone prefix-2
adder is defined as . For
the static 64-bit Han-Carlson prefix-2 adder, it is defined
as . From this analysis, it is
clear that the Han-Carlson adder trades logic depth for wiring
complexity. At the same prefix, LD, F, and WC can be traded
for each other to construct different adder implementations. A
detailed analysis of adder topologies is provided in [13].

III. ADDITION ALGORITHMS

Weinberger presented the most widely known carry recur-
rence for VLSI addition in 1958 [1]. Over the years, several
addition algorithms have been developed. These algorithms ma-
nipulate the carry and sum equations in an attempt to improve
the speed of addition. The equations for sum and carry are de-
fined and indexed as follows in this paper:

(1)

(2)

Ling modified this algorithm to reduce the complexity of the
carry computation at the cost of increased complexity in the sum
computation [3]. An analysis was later performed by Doran to
determine the set of recurrences which have recurrence proper-
ties that are similar to Weinberger’s and Ling’s [4].

A. Weinberger’s Recurrence

Weinberger [1], demonstrated that addition speed could be
improved by parallelizing the computation of carry. Although
widely credited with only the Carry Look-Ahead Adder, Wein-
berger’s recurrence was not limited in group size or number
of levels for carry computation [1]. The fundamental advance-
ment of his work was the introduction of generate and propa-
gate. Weinberger defined the terms: bitwise generate , bit-
wise propagate , group generate , and group propagate

. These terms allow for carry computation to be performed
in parallel, yielding a significant improvement in performance
compared to ripple-carry addition. Weinberger’s original pre-
sentation of the recurrence is shown in Fig. 1. For a group of
4 bits, Weinberger recurrence has ten terms for the generation
of from the inputs and four terms for the generation of

. The maximum transistor stack height is 5 and it is not in
the limit of ECL technology.

Weinberger demonstrated that and could be used to
create blocks of arbitrary size and parallelized to form multiple
levels of recurrence [1] (Fig. 1). Thus, the majority of parallel
prefix adders proposed for high-performance addition are spe-
cific realizations of Weinberger’s recurrence, e.g., Kogge-Stone
[9], Brent-Kung [10], Han-Carlson [11], Ladner-Fischer [12],
and those described by Knowles [13].

B. Ling’s Recurrence

IBM ECL technology limitations on fan-in (limited to 4) and
wired-OR (limited to 8) motivated Ling to develop a transforma-
tion that reduced the fan-in of Weinberger’s recurrence [3]. As
originally presented [3] Ling’s transformation is very difficult
to understand. For clarity, a simple derivation of Ling’s trans-
formation will be shown. This derivation provides the physical
meaning of the signals used in Ling’s transformation and iden-
tifies the favorable characteristics of Ling for implementation in

1222 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

modern CMOS technology. In the derivation, the bitwise gen-
erate signal is defined as: and the bitwise propagate
signal is defined as: . Note that the propagate signal

is the same as Weinberger’s (when implemented using an
OR). To maintain consistency with Ling’s original paper, will
be used for propagate.

Ling’s transformation reduces the complexity of Wein-
berger’s recurrence by factoring from to create a
pseudo-carry on which the recurrence is performed. The
transformation is shown below on to form . The carry-out
signal, , of the first bit position is

(3)

Ling’s transformation uses the property to form

(4)

where , which leads to

(5)

The general transformation of is defined as

(6)

where the pseudo-carry, , is defined as

(7)

The physical meaning of the pseudo-carry signal can be
described as follows. By factoring out of the carry expres-
sion and propagating instead of , all cases where carry
is generated and/or propagated from the stage preceding stage

are included in . This includes the case where a carry-in to
the th stage can be assimilated (which should not result in a
carry-out). The assimilate condition is handled when forming

by AND’ing with to produce . If the carry-assim-
ilate (carry-kill) condition exists then , which results in

.
A recurrence for can be defined as has been done previ-

ously for Weinberger’s . The group pseudo-carry and
transmit which allow for parallel prefix computation can
be defined over the group of bits (capital letters are used to
refer to the group):

(8)

(9)

The recurrence can be expressed using the “•” operator as

(10)

The transformation from Weinberger’s recurrence to Ling’s
recurrence for a group of 4 bits is shown in the example in Fig. 2.
This figure should dispel any difficulties associated with under-
standing the original Ling’s derivation [3]. As shown in Fig. 2,

Ling recurrence has seven terms for the generation of from
the inputs and four terms for the generation of . The max-
imum transistor stack height is 4 and it is in the limit of ECL
technology.

From (8), (9) and Fig. 2, it is clear that the recurrence can be
realized using groups of any size and number of levels, making
it suitable for use with the parallel prefix structures that have
historically been used with Weinberger’s recurrence [19], [20].

The advantage of using pseudo-carry instead of carry is offset
by the increased complexity of sum computation, which re-
quires the real carry to form individual sum signals. In CMOS
technology can be efficiently calculated conditionally, thus
avoiding the AND operation on the critical carry path:

(11)

Conditional sum computation in a Ling adder can also be ex-
tended to several bit position to create a sparse recurrence struc-
ture [19], [20].

In 1988, Doran analyzed all possible recurrences for binary
addition that could be created from inputs to adjacent bits

. In his analysis he found that there were four
variants with Ling-like properties [4]. The conclusion from his
work is that the only recurrences worth considering for CMOS
realization are Weinberger and Ling.

IV. DESIGN METHODOLOGIES

Concerns about energy consumption have forced digital de-
signers to develop techniques for improving energy efficiency.
Several approaches have been proposed to improve energy ef-
ficiency: proper selection of circuit family and prefix; reducing
the number of logic stages without increasing gate count; re-
ducing switching activity; reducing the number of logic gates;
and reducing the wiring complexity. This section presents the
approaches for the optimal construction of high-performance
VLSI adders in a given technology.

A. Logic Family Selection

In VLSI design, the selection of logic family is dictated by the
system performance target. In structures where the performance
target is relaxed or where energy is the primary constraint, static
circuits are preferred due to their lower switching activity. In ad-
dition to that, static circuits are robust and become more prefer-
able as technology scales down. However, in high-performance
microprocessors, dynamic circuits are often required in order
to achieve desired target frequency. There are two types of dy-
namic circuit families used in modern digital systems: (a) dy-
namic CMOS domino and (b) CMOS compound domino. The
main difference between these families is that CMOS domino
utilizes a static inverter at the output, while CMOS compound
domino uses a static inverting logic stage. This helps to re-
duce the power by eliminating power hungry dynamic stages
and bundling their functionality in the static CMOS inverting
stage. A prefix-2 computation performed in the static gate of the
compound domino circuit allows for the number of stages in a
64-bit prefix-2 Kogge-Stone carry structure to be reduced from

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1223

Fig. 2. (a) Weinberger’s Recurrence. (b) Ling’s transformation. (c) Ling’s Recurrence. (d) Multi-level Ling.

six CMOS domino stages to three CMOS compound domino
stages.The savings diminishes for higher prefix structures. For
example, a 64-bit prefix-4 Kogge-Stone carry structure requires
three CMOS domino stages compared to two CMOS compound
domino stages. As a summary, static circuits are good for power
and domino circuits are good for speed. Compound domino de-
signs can combine the speed advantage of dynamic designs and
the power advantage of static designs.

B. Prefix Selection

In static CMOS logic, the prefix is mostly limited to 2 because
of transistor stack height limitation while dynamic designs en-
able to use of higher prefixes. As prefix of the design increases
the logic depth decreases and it is expected to lead to delay im-
provement. However, higher prefix requires more complex gates
with increased stack height resulting in higher gate delay. There-

fore, there is an optimal prefix that depends on the design con-
straints and implementation. Given a technology constraint on
transistor stack height, it is possible to determine which prefixes
are feasible for Weinberger’s and Ling’s recurrence (note: Ling
always enables a prefix of one more in the first recurrence stage
as compared to Weinberger). These prefix values can be used to
construct any of the previously published recurrence structures
for either pseudo-carry or carry.

C. Conditional Sum

Dynamic circuits have inherently high switching activity. To
reduce the switching activity and energy used in the wiring
tracks, Mathew [14] suggested to conditionally compute the
sum, using static logic gates. This approach decouples the com-
putation of sum for a group of bits from the carry computa-
tion. The carry or pseudo-carry is computed with high-speed

1224 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 3. 16-bit static minimum depth (fully parallel) Kogge-Stone Weinberger adder (KS2-(W)).

dynamic gates and is used to select the conditionally computed
sum. Conditional logic demonstrates obvious benefits for dy-
namic adders where the switching activity of many gates is re-
duced from 50% (for the original gates on the dynamic paths)
to 15%–20% (for the new static path gates).

The loading of the carry signal in a sparse design increases
directly with the number of sum bits that are selected condition-
ally. For example, a carry signal in a design using a 2-bit con-
ditional sum, often referred to as Sparse-2 (Fig. 4), has twice
the load at the output of the carry signal as compared to the
same carry signal in a Kogge-Stone (KS) design (Fig. 3). How-
ever, propagate and generate signals have fewer connections
(fan-out). This mitigates the penalty of increased loading on
carry when using conditional sum. Furthermore, by eliminating
half of the wires in the carry structure, the load at the output of
the bitwise propagate and generate gates is reduced. The energy
saved by the reducing the wiring complexity can be used to
make up for any speed lost.

Another factor is the implementation of the conditional sum
block. The complexity of conditional sum computation differs
in Ling and Weinberger adders. In Weinberger adders, the sum
is selected by the carry-in to the group of bits [Fig. 5(a)], while
in Ling adders the sum is selected by the pseudo-carry-in to the
group [Fig. 5(b)]. In Ling, the pseudo-carry must be combined
with to form the real carry. The difference between the struc-
tures for 2-bit conditional sum computation is shown in Fig. 5.
The critical path of the circuitry in the Ling adder is more com-
plex, going through an XOR, MUX, and XOR compared to the
critical path for Weinberger which is through only two XORs.

However, the worst case number of input connections in Ling
is fewer than in Weinberger (Fig. 5). Each input in Ling is con-
nected to two logic gates (note: and are attached to
the XOR and the NOR of the succeeding 2-bit conditional sum
block). In Weinberger, and each connect to three gates;
however, and each connect to only one gate.

It is interesting to note that in a KS design, the number of input
connections for the conditional sum computation for and
using Weinberger recurrence is one XOR gate, while using Ling
recurrence results in each input being attached to one XOR gate
and one NOR gate (used to compute transmit which is required
to create carry from pseudo-carry). Thus, Ling has the same
number of input connections in the 1-bit and 2-bit conditional
sum block.

The conditional sum technique is a good approach for en-
ergy saving, because it trades the complexity of the critical carry
block for the complexity of noncritical sum block. The energy
reduction of the carry block will be higher than the energy cost
of the sum block as far as the sum block complexity is less
than the carry block. The benefit of conditional sum depends on
bit-pitch and technology. Bit-pitch determines the wire length
required in the design. Larger bit-pitches result in more wire
capacitance, which degrades the energy and delay of a KS de-
sign faster than that of a sparse design. Technology determines
the optimal sparseness a design should have. When the intrinsic
delay of the conditional sum path becomes similar to the in-
trinsic delay of the carry path, the energy savings is reduced.
Therefore, the optimal sparseness of a design should be chosen
such that the intrinsic delay of the conditional sum block is less

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1225

Fig. 4. 16-bit static minimum depth (fully parallel) Sparse-2 Weinberger adder.

Fig. 5. Two-bit conditional sum computation. (a) Weinberger and (b) Ling.

than the intrinsic delay of the carry path. A simple guideline
to follow is: the number of stages in the conditional sum block
should be less than or equal to the number of stages in the carry
path. For static designs which are typically limited to prefix-2,
the conditional sum block should not exceed 4 bits for adders up
to 64 bits. Dynamic adders, which can utilize prefix-4, should
use either 2-bit conditional sum or 4-bit conditional sum blocks.
It should be noted that it is possible to optimize the size of con-
ditional blocks based on the relative delay of each carry path in
the adder (similar to how the variable block adder optimizes the
carry-skip structure [8]), however this approach significantly in-
creases design time and is not examined in this work.

D. Logic Depth

Logic depth is defined as the number of logic stages from
input to output. The number of stages depends on the prefix
of design. A minimum depth adder implements addition in the
minimum number of logic stages in a given technology (e.g.,
Kogge-Stone [9]). Minimum depth adders are used when high
performance is required [13], [21], [23].

Minimum-depth sparse [14] structures can also be imple-
mented using conditional sum. It should be noted that a sparse
structure does not inherently have to be minimum depth. A
sparse structure can also be implemented using additional logic
stages to compute the carry for each bit, as in Han-Carlson [11].
The circuits for computing sum are simpler in Han-Carlson
design than in a sparse design with 2-bit conditional sum.
However, the carry signal computation is more complex: the
carry signal in the sparse adder is loaded directly by two
MUXs, while the carry signal of the Han-Carlson design has
an additional stage consisting of an OAI and inverter which
are each loaded by a MUX (Fig. 6). When only examining the
carry structure, it seems clear that a minimum-depth structure
has better energy and delay characteristics (fewer logic stages
and gates and less loading). However, this analysis ignores the
input loading of the adder. In Han-Carlson design, the worst
case input loading from the sum computation is an XOR gate,
while the worst case input loading of the Sparse-2 design is one
XOR, one NAND, and one NOR gate. Additionally, fewer gates
are required for computing conditional sum in the Han-Carlson
design, where each sum is computed using one XOR and one
inverter (which create the inputs to the MUX for sum selection).
Thus, for a group of 2 bits, Han-Carlson requires two XORs
and two inverters (INV). In the sparse design, the number of

1226 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 6. Carry loading in (a) Sparse-2 design and (b) Han-Carlson design.

gates required for computing the 2-bit conditional sum is four
XORs, one NAND, one NOR, and one INV [Fig. 5(a)].

Structures utilizing schemes with more stages than minimum
depth such as Han-Carlson and Ladner-Fisher [12] demonstrate
delay penalties or increased energy at the same delay due to the
increased number of logic stages and higher loading on the crit-
ical path. Therefore, the most efficient realization for the highest
performance designs are the minimum-depth designs. For de-
signs in which the delay is relaxed (e.g., low power), it is often
desirable to reduce gate count (and in turn energy) by increasing
the delay. In these cases, designs that use more stages can be
more efficient.

E. Merging Bitwise Operations Into First Recurrence Stage

The first logic stage of most high-performance adder realiza-
tions contains gates which compute the bitwise generate and
propagate (or transmit). These signals are then used as inputs
to a recurrence structure which computes each carry or pseudo-
carry.

In static Weinberger adders, the bitwise operations for gen-
erate and propagate are often computed in a separate logic
stage than the first recurrence stage due to an nMOS and pMOS
transistor stack height limitation of 2. Transistor stack height
refers to the number of transistors connected in series between
a supply terminal and the output. As transistor stack height
increases, the delay of the path becomes larger. Often, stack
height limitations are chosen in order to simplify the design
process, in order to improve the effectiveness of static timing
tools [24].

Using a stack height of 3, the bitwise operations can be
merged directly into the first recurrence stage [Fig. 7(a)]. This
approach allows for a single stage to be removed from any
Weinberger adder realization. As discussed previously, Ling’s
transformation reduces the transistor stack height in the first
stage of the recurrence by one transistor. Therefore, in static
Ling adders, with a transistor stack height limitation of 2, a
prefix-2 computation of and can be performed
in the first stage without violating the transistor stack height
limitation [Fig. 7(b)]. This modification allows for one logic
stage to be removed from the critical path of a static Ling adder

Fig. 7. Circuits for combined bitwise operations and first prefix-2 for
(a) � and (b) � .

compared to a static Weinberger adder when the transistor stack
height is limited to 2.

In Fig. 7, the circuit for computing has only two nMOS
transistors in series compared to the three nMOS transistors
in series required for computing . Notice that the stack
height difference between and is due to the re-
moval of . The logic gates which compute and

are not shown because they are identical and have a worst
case transistor stack height of 2. Subsequent carry stages for
both Weinberger and Ling have the same stack height since the
recursion is performed using the same prefix operator “ ” on
either and for Weinberger or and for Ling [19], [20].
Thus, there is no difference between a Weinberger adder and a
Ling adder in subsequent recurrence stages. Only the first re-
currence stage and the sum computation differ. An example of
a 16-bit Ling adder with bitwise operations merged into the first
recurrence stage is shown in Fig. 8.

Dynamic adders can implement even higher prefix circuits in
the first logic stage [21], [22]. In dynamic circuits, both Wein-
berger and Ling adders can combine bitwise operations into
the first logic stage. The circuit for computing Weinberger’s

requires one more nMOS transistor in series compared to
Ling’s . Depending on transistor stack height limitations, this
can result in a reduction of one logic stage in dynamic adders
using Ling recurrence as compared to those using Weinberger
recurrence.

Merging the bitwise operations into the first recurrence stage
reduces the number of logic stages from six to five in Ling’s
KS design. This reduction is achieved without significantly in-
creasing the complexity of the logic gates (only the first gate is

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1227

Fig. 8. 16-bit static minimum depth (fully parallel) Sparse-2 Ling adder with merged first recurrence stage and bitwise operations (KS2-S2-(L)).

slightly more complex). A portion of the energy saving comes
from the reduction of logic gates. The additional energy savings
is a result of the reductions in the size of subsequent stages. By
having one less stage, the gates in each stage of the merged de-
signs can run slower (i.e., can be smaller) than the gates in the
design with more stages which must run faster (i.e., be larger)
in order to operate the adder at the same speed. In summary, the
merging technique is a good approach to reduce the energy con-
sumption as far as the increase in the complexity of the merged
stage is acceptable. For high-performance applications, it is an
effective method for energy saving since it reduces the number
of stages which provides extra room for delay relaxation.

F. Use of Ling Recurrence

Ling’s recurrence demonstrates realization advantages com-
pared to Weinberger by reducing the complexity of the carry
block using pseudo-carry, resulting in improved performance.
In addition, merging the bitwise operations into the first recur-
rence stage is achieved without exceeding a stack height limi-
tation of 2. It means that Ling recurrence allows the removal of
a logic stage from the critical path of the carry block, incurring
energy saving.

It should be noted that Ling’s recurrence is not compatible
with adders that are built upon full adders, such as carry-skip,
variable block, and carry-select. There are two limitations of
Ling which make implementation of these types of adders im-
practical. First, Ling cannot use an XOR for propagate (thus re-
quiring an additional gate for computing propagate instead of
reusing partial sum). Second, the pseudo-carry must be com-
bined with the bitwise propagate to form the true carry-in to a
block (adding additional logic stages in the path compared to
Weinberger). Thus, Ling should only be used in adders which
are not built on top of full adders such as parallel prefix adders,
and where the sum computation is separate from the computa-
tion of carry.

TABLE I
LE PARAMETERS IN 65 NM, 45 NM, 32 NM, AND 22 NM CMOS TECHNOLOGIES

G. Load Buffering

After the final XOR (MUX) stage, it is possible to add in-
verters to drive the output load because inverters are the most
energy-efficient drivers. Extra delays come from the parasitic
and effort delay of the added inverters. However, the delay of
the original circuit will be reduced since it drives added inverters
that are smaller than the output load. In addition, extra energy
is consumed by added inverters but the original circuit’s size
is reduced. There is a tradeoff between the saved delay/energy
and extra delay/energy coming from the added inverters. Load
buffering provides energy savings for heavily loaded designs
under the same delay constraints. As the load is reduced, the en-
ergy saving of the adder circuit cannot compensate for the extra
energy consumed by the extra inverters. The energy saving of
load buffering depends on the driving strength of the original
circuit and the path gain.

As technology scales down, the logical effort and parasitic
of the complex gates become larger as compared to the inverter
(Table I). This trend means that the driving strength of the com-
plex gates (e.g., NAND2 and NOR2) has weakened compared
to the inverter in new technology nodes. Therefore, addition of
buffer stages can provide a better energy-efficient solution for
future technologies.

1228 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 9. 64-bit domino conditional four-stage FZO-S2 adder.

V. ENERGY EFFICIENT ADDERS

In this section, we present three of the best 64-bit adder de-
signs in terms of performance and energy. They are obtained
by carefully trading off the relevant features we observed while
comparing various possible tradeoffs in terms of algorithm, re-
currence, logic structure, technology, wiring, and energy-delay
balance of each using our design estimation tools [16], [20].
These adders are products of the design methodologies given
in Section IV. We obtained three designs, described below.

A. 64-Bit Static Kogge-Stone Prefix-2 Conditional Ling:
KS2-S2-(L)

A prefix-2 KS Ling (KS2-(L)) adder which merges bitwise
operations into the first recurrence stage can be constructed in
a similar fashion as a Weinberger KS adder. This adder can
be implemented using static (KS2-(L)), domino (KS2-(L)), and
compound domino (KS4-(L)) logic styles for various bit widths.
64-bit carry can be computed in six static logic stages. When
using compound CMOS domino logic, the dynamic gate in the
first stage can operate directly on the input operands to perform
a prefix-2 operation for and , followed by a static gate which
performs a prefix-2 operation. Thus, a 64-bit carry can be com-
puted in either three compound CMOS domino logic stages or
six CMOS domino logic stages. The sum for each bit is condi-
tionally computed and selected using the pseudo-carry. Condi-
tional sum computation is done by use of (11).

The complexity of the KS2-(L) adder can be reduced by using
a Sparse-2 design (KS2-S2-(L)). This approach allows for the
number of gates in the carry structure to be reduced by half. To
maintain four stages (for CMOS compound domino) or seven
stages (for CMOS domino) in the adder, 2-bit conditional sum
blocks are used. Sums are selected based on the pseudo-carry,

, to the block:

(12)

As is the case with the KS2-(L) adder, the KS2-S2-(L) adder
can be implemented using static, domino, and compound

domino logic gates and for various bit widths, such as 32 bits
and 16 bits.

B. 64-Bit CMOS Domino Four-Stage Conditional Ling: FZO
Adder

FZO-S1 (Sparse-1 implementation) is a 64-bit domino
prefix-4 Kogge-Stone Ling (L) adder with merged bitwise
operations. It is a four-stage adder optimized for speed. Using
prefix-4 domino logic gates, the pseudo-carry for each bit can
be computed in three domino logic stages. The dynamic gate in
the first stage operates directly on the input operands to perform
prefix-4 operations for and , followed by an inverter. The
succeeding two stages perform prefix-4 operations for and

, allowing for the 64-bit pseudo-carry to be computed in three
domino logic stages. The sum for each bit is conditionally
computed and selected using the pseudo-carry.

The complexity of a FZO-S1 adder can be reduced by com-
puting every other pseudo-carry, using a Sparse-2 design (FZO-
S2). This approach allows for the number of gates in the carry
structure to be reduced by half in the FZO-S1 adder. To main-
tain four domino logic stages in the adder, 2-bit conditional sum
blocks are implemented (Fig. 9). Sums are selected based on the
pseudo-carry, , to the block as shown in (12).

C. 64-Bit CMOS Compound Domino Conditional Three-Stage
Ling: EZO Adder

EZO-S1 (Sparse-1 implementation) is a three-stage Ling
adder. It is similar to the FZO-S1 adder, however, it utilizes
CMOS compound domino logic gates instead of CMOS domino
logic gates. A prefix-4 dynamic gate is used in the first stage of
the recurrence for computing and directly from
the input operands. The static gates in the first logic stage per-
form prefix-2 operations on and (the prefix-4 dynamic gate
and the following prefix-2 static gate are defined as a prefix-8
compound domino stage). The equations used in the first stage
dynamic gates for computing and are

(13)

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1229

Fig. 10. 64-bit compound domino conditional three-stage EZO-S2 adder.

(14)

The second compound domino logic stage consists of a
prefix-4 dynamic gate followed by a prefix-2 static gate. This
structure allows for the pseudo-carry to propagate throughout
the entire adder in two compound domino logic stages. The
final logic stage performs the sum computation. Carry-out is
computed conditionally and selected in the same stage as ,
using as the select signal.

The EZO-S2 (Sparse-2 implementation) adder is optimized
for lowest energy at the given speed. It uses conditional three-
stage Ling arrangement in order to reduce the amount of wiring
and reduce the number of gates as compared to EZO-S1 by gen-
erating every other pseudo-carry without increasing the number
of stages (Fig. 10). The logic stages are similar to those of
EZO-S1. They consist of two compound domino stages and each
stage consists of a dynamic prefix-4 followed by a static prefix-2
operation. The third stage is a 2-bit conditional sum selected
with the pseudo-carry. The two-bit conditional sum is computed
and selected as in (12).

VI. PERFORMANCE COMPARISON AND TECHNOLOGY SCALING

All results are obtained by characterizing the delay and
energy of logic gates in 65 nm, 45 nm, 32 nm, and 22 nm
CMOS technologies using the typical process corners. The
delay of each logic gate is characterized under worst case single
input switching conditions. Predictive Technology Models
(PTM) [33] are used. Wire lengths are determined based on
the bit-pitch of the register file. The summary of technology
characterization is given in Table II.

In VLSI circuits, three types of interconnects are commonly
used [28], [29]. Local and intermediate wires are used within
logic gate and between gates, respectively. Global wires are

TABLE II
TECHNOLOGY CHARACTERIZATION SUMMARY

used for the purpose of clock and power distribution. As tech-
nology scales, the length of local and intermediate wires is also
scaled down. However, this is not the case for global wires since
the size of the chip grows even in new technologies. In this anal-
ysis, local and intermediate wires are considered since global
wires are not utilized inside the adder blocks. The bit-pitch is
scaled down with respect to the minimal transistor width as
shown in Table II. The wire capacitance per length given in
Table II is taken from the interconnect report of the International
Technology Roadmap for Semiconductors (ITRS) [32].

VII. RESULTS

The energy-delay estimation method presented in [16] is
used to analyze the designs in the energy-delay space. The gate
sizes of each adder are optimized for energy under a range
of operating conditions (delay and input/output loading). The
transistor sizing optimization process is iterative, and was
performed using MATLAB. Logical Effort delay models were
used along with the energy models presented in [16]. Each
data point corresponds to a unique optimal sizing of the adder
under the corresponding operating condition. In the gate sizing

1230 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 11. Estimation versus H-Spice simulation.

optimization, the output load is fixed to 100*Min-Inv and
the input loading is swept from 20*Min-Inv to 100*Min-Inv.
For each input capacitance, the minimum delays are found.
Then, the circuits are optimized for minimum energy under
the delay constraints found in delay optimization (delay-con-
strained energy optimization). In this paper, all plots show the
energy-minimized points.

Energy consumption of a design directly depends on the
switching activity rates of internal nodes. The switching activity
rates at internal nodes are complex functions of logic gates and
the nature of input vectors [30], [31]. For comparison purposes,
temporally and spatially uncorrelated input vectors are assumed
to measure switching activity factors of internal nodes. This
simplifies the energy estimation. Under those assumptions, the
input switching activity rate is 25% for totally random input
vectors. The average switching activity rate at internal nodes
is around 20% for static adders and around 50% for dynamic
adders. The exact switching activity of each node is found by
observing the toggles using the switch-level simulator with
totally random input vectors. The worst case difference between
the energy estimation using the fixed switching activity and
the exact switching activity rate is less than 6% for the 64-bit
KS2-(W) adder in all logic families. We used exact switching
activity factors in energy optimization for the final results.
Therefore, all plots are generated using the exact switching
activity rate at each internal node.

To justify the use of our energy-delay estimation method, we
compared the results of energy-delay estimation and H-Spice
simulation. For energy measurement, totally random input vec-
tors under the aforementioned constraints (25% input switching
activity rate) were generated and applied to the adder. Then,
measured results were averaged to obtain mean energy con-
sumption. Spice simulation results for the 64-bit static KS2-(W)
adder and the estimation results are sufficiently close, ranging
from 65 nm to 22 nm technology nodes. The worst case error
between Spice and estimation is less than 6% for delay and less
than 15% for energy (Fig. 11).

A. Static CMOS Adders

To determine the potential benefit of methodologies described
in Section IV, several static 64-bit adders were implemented.
The Weinberger (W) recurrence was analyzed on Kogge Stone
(KS2-(W)) and Han Carlson (HC2-(W)) structures. The Ling

Fig. 12. Comparison of representative 64-bit static CMOS adders at 65 nm
technology.

Fig. 13. Representative 64-bit static CMOS adders across CMOS technology
nodes.

(L) recurrence was examined on Kogge-Stone (KS2-(L)) and
Sparse-2 (KS2-S2-(L)) structures. It is possible to achieve 5%
performance improvement and 1.7 energy reduction over
existing designs (Fig. 12). The scenario when the technology
will move to 22 nm is given in Fig. 13.

The merging of the bitwise operation into the first recurrence
stage provides lower energy at the same performance in Ling’s
adder. For Weinberger’s adder, it also leads to energy reduction.
Weinberger’s adder is mostly implemented without merging in
the first stage and Ling is mostly implemented with merging be-
cause of the technology limitations. Load buffering is applied
to all adders and the best ones (with or without external in-
verter stage) are selected. Merged designs show lower energy
consumption at the same performance after adding of an in-
verter stage to drive the load. However, this is not the case for
non-merged designs.

This result demonstrates that the traditional approach for
constructing high-performance parallel prefix adders is not
energy efficient. The minimum-depth KS and Sparse-2 design
shows the best high-performance energy-delay characteristic
while the merged adder has the lowest energy consumption at
the same performance. The use of Ling recurrence along with
the merging and conditional sum techniques provides the lowest
energy at the same performance. The methodology presented in
Section IV yields the most energy-efficient high-performance
static CMOS adder (KS2-S2-(L)).

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1231

Fig. 14. Comparison of representative 64-bit CMOS domino adders at 65 nm
technology.

Fig. 15. Representative 64-bit CMOS domino adders across CMOS technology
nodes.

B. Dynamic CMOS Domino Adders

Dynamic CMOS adders generally have additional constraints
in order to maintain functionality compared to static CMOS
adders. In dynamic adders, the number of stages must be even
(e.g., dynamic followed by static); as well, the first stage of the
adder must be footed (the clocked transistor must be part of the
nMOS stack), in order to allow for changes on the inputs. There-
fore, the impact of techniques suggested for optimal adder de-
sign can differ for dynamic adders as compared to static adders.

In dynamic CMOS domino adders, an inverter is required
after every dynamic gate, guaranteeing that the number of stages
is even. In these designs, the sum computation is performed
using static gates, while the carry computation is performed with
dynamic gates. The energy-delay results for the 64-bit domino
implementations with KS and Sparse2 for both Ling and Wein-
berger, HC (W), the leading CMOS domino implementation by
Kao [23], and the proposed FZO-S2, are shown in Fig. 14. The
design by Kao [23] is similar to the FZO-S2 design, however, it
does not merge the bitwise operations into the first recurrence
stage. The scenario when the technology will move to 22 nm is
given in Fig. 15.

The results demonstrate similar tradeoffs as observed in the
static 64-bit adders. The Ling adder demonstrates better perfor-
mance than the Weinberger. The minimum depth designs also
demonstrate the best performance, with HC running slower than

Fig. 16. Comparison of representative 64-bit compound domino CMOS adders
at 65 nm technology.

Fig. 17. Representative 64-bit CMOS compound domino adders across CMOS
technology nodes.

KS and Sparse-2. The FZO-S2 adder demonstrates the best en-
ergy-delay characteristic in all technology nodes. This adder
is implemented using only four CMOS domino logic stages
and appears to provide an optimal balance between number of
stages, logic gates, and logic gate complexity for CMOS domino
adders.

C. Dynamic CMOS Compound Domino Adders

The 64-bit CMOS compound domino realizations of both
Ling and Weinberger adders using KS and Sparse-2 structures,
along with HC (W) are shown in Fig. 16. The scenario when the
technology will move to 22 nm is shown in Fig. 17. The results
are similar to those for static CMOS and CMOS domino in that
Ling provides better energy-efficient designs over Weinberger,
and minimum-depth designs show a performance improvement
over HC.

Using CMOS compound domino does not guarantee that
merging will remove a logic stage from the adder. While
merged 64-bit KS and Sparse-2 CMOS compound domino re-
alizations eliminate a stage (reducing the number of stages from
five to four), the Han-Carlson design, which merges the bitwise
operations into the first recurrence stage, and the one that does
not each have five compound domino stages. This is because the
carry-tree in HC requires eight logic stages when implemented
without merging and seven when implemented with merging.

1232 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

However, in CMOS compound domino logic only an even
number of stages can be used. Therefore, each design requires
four compound domino logic stages for computing carry and
one stage for computing sum. The result is that the merged
Han-Carlson design suffers a significant performance penalty
compared to the design without merging. This effect varies
depending on the size of the adder. For example, in a 32-bit
adder both types using Kogge-Stone structure (with and without
merging) will have the same number of dynamic–static stages,
while the Han-Carlson design, which merges the operations,
will have one less dynamic–static stage than the design that
does not. This appears to be the only situation when merging
the bitwise operation into the first recurrence stage does not
yield the most energy-efficient realization of the structure.

VIII. CONCLUSION

By taking advantage of possible energy-delay tradeoffs on
various levels, algorithm, recurrence, wire delay and energy,
circuit sizing and circuit topology, we have developed a 64-bit
adder (EZO-S2) which operates at the highest achievable
speed using up to four times less energy over leading CMOS
implementations (e.g., Kao [23]). The energy benefit of using
Ling’s algorithm in the first recurrence stage was demonstrated
in static adders and dynamic CMOS adders. CMOS compound
domino adders demonstrated further savings dependent on the
ability to reduce the number of stages in the adder. Additionally,
we demonstrated that minimum-depth structures are best for
high-performance adders. Introducing conditional sum in the
last stage reduces the density of the wiring tracks. The portion
of the energy saved in the wires is traded for speed improvement
in the conditional stage, while the remaining portion is applied
for overall speed improvement. The applied tradeoffs were
used to design energy-efficient high-performance 64-bit static
and 64-bit dynamic adder. We further examined how these
tradeoffs change when the technology scales down. By doing
so, we achieved 1.7 energy saving and a 5% performance
improvement in static adders and 20% faster design and 4.5
energy reduction in domino adders at 65 nm technology. Im-
plementation in compound domino family yields 2.4 energy
reduction in the best performance range. We also generated the
energy-delay characteristics of proposed and existing adders
across all technology nodes. The results show that the given
methodologies lead to the best design at all technology nodes.

ACKNOWLEDGMENT

The authors thank Dr. Mustafa Aktan for optimization tool
support and Dr. Matthew Sanu of Intel Corporation for his ideas
and contributions.

REFERENCES

[1] A. Weinberger and J. L. Smith, “A logic for high-speed addition,” Nat.
Bur. Stand. Circ., vol. 591, pp. 3–12, 1958.

[2] S. Winograd, “On the time required to perform addition,” J. ACM, vol.
12, no. 2, pp. 277–285, Apr. 1965.

[3] H. Ling, “High-speed binary adder,” IBM J. Res. Devel., vol. 25, no. 3,
pp. 156–166, May 1981.

[4] R. W. Doran, “Variants of an improved carry look-ahead adder,” IEEE
Trans. Comput., vol. 37, no. 9, pp. 1110–1113, Sep. 1988.

[5] M. Lehman and N. Burla, “Skip techniques for high-speed carry prop-
agation in binary arithmetic units,” IRE Trans. Electron. Comput., vol.
EC-10, pp. 691–698, Dec. 1961.

[6] O. J. Bedrij, “Carry-select adder,” IRE Trans. Electron. Comput., vol.
EC-11, pp. 340–346, 1962.

[7] J. Sklanski, “Conditional-sum addition logic,” IRE Trans. Electron.
Comput., vol. EC-9, no. 2, pp. 26–231, 1960.

[8] V. G. Oklobdzija and E. R. Barnes, “Some optimal schemes for ALU
implementation in VLSI technology,” in Proc. 7th Symp. Computer
Arithmetic, ARITH-7, pp. 2–8, reprinted in Computer Arithmetic, E.
E. Swartzlander, Ed., vol. II, pp. 137-1423, 1985.

[9] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol. C-22, no. 8, pp. 786–793, Aug. 1973.

[10] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol. C-31, no. 3, pp. 260–264, Mar. 1982.

[11] T. Han and D. A. Carlson, “Fast area-efficient VLSI adders,” in Proc.
8th IEEE Symp. Computer Arithmetic, Como, Italy, May 1987, pp.
49–56.

[12] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, Oct. 1980.

[13] S. Knowles, “A family of adders,” in 14th IEEE Symp. Computer Arith-
metic, Adelaide, Australia, Apr. 14–16, 1999.

[14] S. K. Mathew et al., “A 4 GHz 130 nm address generation unit with
32-bit sparse-tree adder core,” in Symp. VLSI Circuits Dig. Tech. Pa-
pers, 2002, pp. 126–127.

[15] H. Q. Dao, B. R. Zeydel, and V. G. Oklobdzija, “Energy optimization
of pipelined digital systems using circuit sizing and supply scaling,”
IEEE Trans. VLSI Syst., vol. 14, no. 2, pp. 122–134, Feb. 2006.

[16] V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, and R. Kr-
ishnamurthy, “Comparison of high-performance VLSI adders in en-
ergy-delay space,” IEEE Trans. VLSI Syst., vol. 13, no. 6, pp. 754–758,
Jun. 2005.

[17] V. Zyuban and P. N. Strenski, “Balancing hardware intensity in mi-
croprocessor pipelines,” IBM J. Res. Develop., vol. 47, no. 5/6, pp.
585–598, Sep./Nov. 2003.

[18] D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and R.
Brodersen, “Methods for true energy-performance optimization,”
IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1282–1293, Aug.
2004.

[19] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix ling
adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225–231, Feb.
2005.

[20] B. R. Zeydel, T. Kluter, and V. G. Oklobdzija, “Efficient mapping of
addition recurrence algorithms in CMOS,” in 17th IEEE Symp. Com-
puter Arithmetic, Cape Cod, MA, Jun. 2005.

[21] J. Park et al., “470 ps 64-bit parallel binary adder,” in Symp. VLSI Cir-
cuits Dig. Tech. Papers, 2000, pp. 192–193.

[22] S. Naffziger, “A sub-nanosecond 0.5 �m 64-b adder design,” in IEEE
Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp.
362–363.

[23] S. Kao, R. Zlatanovici, and B. Nikolic, “A 240ps 64-bit carry-looka-
head adder in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC’06), San Francisco, CA, Feb. 2006.

[24] J. D. Warnock et al., “The circuit and physical design of the POWER4
microprocessor,” IBM J. Res. Devel., vol. 46, no. 1, pp. 27–51, Jan.
2002.

[25] I. E. Sutherland, R. F. Sproull, and D. Harris, Logical Effort: Designing
Fast CMOS Circuits. Boston, MA: Morgan Kaufmann, c1999.

[26] V. G. Oklobdzija and B. R. Zeydel, “Energy-delay characteristics of
CMOS adders,” in High-Performance Energy-Efficient Microprocessor
Design, V. G. Oklobdzija and R. K. Krishnamurthy, Eds. New York:
Springer, Jul. 2006.

[27] V. G. Oklobdzija, B. R. Zeydel, H. Dao, S. Mathew, and R. Krishna-
murthy, “Energy-delay estimation technique for high-performance mi-
croprocessor VLSI adders,” in 16th IEEE Symp. Computer Arithmetic,
Santiago de Compostela, Spain, Jun. 15–18, 2003.

[28] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[29] R. Ho, K. Mai, and M. Horowitz, “Managing wire scaling: A circuit
perspective,” in Proc. IEEE Interconnect Technology Conf. 2003, Jun.
2003, pp. 177–179.

[30] D. Baran, M. Aktan, H. Karimiyan, and V. G. Oklobdzija, “Exploration
of switching activity behavior of addition algorithms,” in MWSCAS
2009, Cancun, Mexico, Aug. 2–5, 2009.

[31] D. Baran, M. Aktan, H. Karimiyan, and V. G. Oklobdzija, “Switching
activity calculation of VLSI adders,” in ASICON 2009, Changsha,
China, Oct. 20–23, 2009.

ZEYDEL et al.: ENERGY-EFFICIENT DESIGN METHODOLOGIES: HIGH-PERFORMANCE VLSI ADDERS 1233

[32] ITRS (International Technology Roadmap for Semiconductors)
[Online]. Available: http://www.itrs.net/Links/2007ITRS/2007Chap-
ters/2007Interconnect.pdf

[33] Predictive Technology Model (PTM) website. Nanoscale Integration
and Modeling (NIMO) Group, Arizona State Univ., Tempe, AZ, 2007
[Online]. Available: http://www.eas.asu.edu/~ptm/

[34] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman, “Robust
energy-efficient adder topologies,” in Proc. 18th IEEE Symp. Computer
Arithmetic, ARITH’07, Jun. 25–27, 2007, pp. 16–28.

Bart R. Zeydel (S’00–M’05) received the B.S. de-
gree in 2001, and the Ph.D. degree in electrical and
computer engineering from the University of Cali-
fornia, Davis, in 2005.

In 2000, he worked at Mentor Graphics on the
VRTX real-time operating system. In 2001, he
worked at Fujitsu Microelectronics where he de-
signed datapath elements for a VLIW processor, and
at Telairity, where he developed portable hard-IP
datapath blocks. In 2003, he was an intern at Intel
Corporation’s Circuits Research Laboratories,

Hillsboro, Oregon, where he designed datapath elements for DSP and wireless
products. Currently, he is with Plato Networks, where he designs datapath ele-
ments for a 10GBASE-T PHY. His research interests include high-performance
and low-power datapath circuits, design methodologies for energy-efficient
high-performance and low-power digital circuits, and the development of CAD
tools for design in the energy-delay space.

Dursun Baran (S’09) was born in Tokat, Turkey, in
1984. He received the B.S. degree in electrical engi-
neering from Bogazici University, Istanbul, Turkey,
in 2007, and the M.S.E.E. degree from the Erik Jon-
sson School of Engineering and Computer Science,
The University of Texas at Dallas, Richardson, TX,
in 2009. He is currently pursuing the Ph.D. degree in
electrical engineering at the same school.

In 2007, he joined the Advanced Computer Sys-
tems Engineering Laboratory (ACSEL), The Univer-
sity of Texas at Dallas, working in the area of high

performance and low power digital circuits. In the past he has designed wireless
devices at Pozitif Electronics Inc., Istanbul, Turkey. His research interest is in
the optimization and design of energy-efficient circuits.

Vojin G. Oklobdzija (S’78–M’82–SM’88–F’96)
received the Dipl.Ing. degree from the School of
Electrical Engineering, University of Belgrade, in
1971, and the Ph.D. degree from the University of
California at Los Angeles in 1982. During his Ph.D.
study, he worked at Xerox Corporation Microelec-
tronic division and was involved in early workstation
development of Xerox Alto.

From 1982 to 1991, he was with the IBM Thomas
J. Watson Research Center, where he made contribu-
tions to the development of the first RISC processors,

super-scalar and supercomputer design. In the course of this work, he obtained
several patents, the most notable one on register renaming, which enabled a
new generation of modern computers. From 1988 to 1990, he was an IBM vis-
iting faculty member at the University of California at Berkeley, Professor and
Emeritus Professor at the University of California at Davis, 1991–2006, Chair
Professor at Sydney University, 2006–2007, and currently at The University of
Texas at Dallas. He has actively served as a consultant for many companies in-
cluding Sun Microsystems, Bell Laboratories, Texas Instruments, Hitachi, Fu-
jitsu, Sony, Intel, Samsung, and Siemens Corporation (as a principal architect
for the Infineon TriCore processor). He has published 170 papers, six books and
a dozen book chapters in the areas of circuits and technology, computer arith-
metic and computer architecture. His book Computer Engineering won Out-
standing Academic Title award, out of 22,000 titles considered and is currently
in its second edition. He has given over 200 invited talks and short courses in
the USA, Europe, Latin America, Australia, China and Japan. He holds 15 U.S.,
six European, six Japanese, and six international patents.

Prof. Oklobdzija is serving on the Editorial Board of IEEE MICRO and
the publishing board of Taylor-Francis, IEEE Fellow Committee, and nu-
merous other IEEE committees. He served as an Associate Editor of IEEE
TRANSACTIONS ON COMPUTERS from 2000 to 2006, IEEE TRANSACTIONS ON

VLSI from 1995 to 2003, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

II and Journal of VLSI Signal Processing, the ISSCC program committee
from 1996 to 2003 and again in 2007, First Asian A-SSCC, International
Symposium on Low-Power Design, Computer Arithmetic, ICCD, PATMOS,
and numerous other conference committees. Currently, he is General Chair
for the International Symposium on Low Power Design (ISLPED 2010) and
20th International Symposium on Computer Arithmetic (ARITH-20). He was
a General Chair of the ARITH-13 (1997), DCAS-2008, Technical Program
Chair for ISLPED 2008, and Track Chair for ICCD 2008. He is a Distinguished
Lecturer of the IEEE Solid-State Circuits Society, Vice-President of IEEE CAS
,and a member of the IEEE CAS Board of Governors.

Dr. Oklobdzija has provided litigation consulting and expert witness services
to major legal firms in USA and abroad including Townsend and Townsend,
Arent Fox, Kellogg Huber, Dechert LLP, DLA Piper US LLP and Farella Braun
Martel LLP. He directs the ACSEL Laboratory which is involved in digital cir-
cuits optimization for low-power, ultra low-power and high-performance sys-
tems. (http://www. acsel-lab.com)

